[PDF] Exercices dÉlectrocinétique Régime transitoire et régime forcé continu





Previous PDF Next PDF



Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

4) Peut-on prévoir le régime permanent sans calcul? Si oui déterminer U



Régimes transitoires du premier ordre Régimes transitoires du Régimes transitoires du premier ordre Régimes transitoires du

12 nov. 2017 4 - Montrer que l'énergie initialement stockée dans la bobine est dissipée par effet Joule dans la résistance. Exercice 3 : Circuit RC à deux ...



SERIE DEXERCICES N° 3 : ELECTROCINETIQUE : CIRCUITS

CIRCUITS LINEAIRES EN REGIME TRANSITOIRE Données : e = 6 V R = 30 Ω



Régimes transitoires du deuxième ordre Régimes transitoires du

24 nov. 2017 Exercice 5 : RLC série en régime libre. [oral CCP ♢♢0]. R. C. L. uC. On étudie le circuit ci-contre où le condensateur est initialement ...



TD 3: Circuits linéaires en régime transitoire

DCSM Sup MPSI TD3: Circuits linéaires en régime transitoire. 1. TD 3: Circuits linéaires en régime transitoire. Exercice 1: Circuit (R L) ; Circuit (R



EXERCICES PROBLEMES PHYSIQUE MPSI PCSI PTSI

régime libre tend vers 0 quand t augmente.Au bout d'un certain temps seul subsiste le régime forcé. On appelle régime transitoire le régime représenté par ...



Electricite. Exercices et methodes

régime oscillatoire amorti régime critique pulsation propre coefficient d'amortissement. Les circuits électriques en régime transitoire. 4. Les régimes ...



Circuits en régime transitoire

U/ = - r r + R. E . W Exercice 2. ¥ Préliminaires. Comme l'intensité du courant traversant une bobine est une fonction mathémati-.



Exercices sur les régimes transitoires du 1 ordre

Exercices sur les régimes transitoires du 1 er ordre. Ce document est une Régime transitoire : principe d'un astable avec un circuit 555. (6 pts) ...



Electrocinétique MPSI

MPSI. Exercices 1re année. I Mathématiques MPSI. I Physique MPSI. Nous ... transitoire du circuit RLC on introduit les variables réduites : La pulsation propre ...



Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

2) `A quelles conditions le régime transitoire est-il : du condensateur et I



Régimes transitoires du premier ordre Régimes transitoires du

Nov 12 2017 Régimes transitoires du premier ordre. Exercices d'électronique. Exercice 1 : Circuit RC soumis à un échelon de courant.



TD MPSI

MPSI. THEOREMES DES CIRCUITS LINEAIRES. & REGIMES TRANSITOIRES. Exercice n°1 : Pont de Wheatstone. On considère le circuit connu sous le nom de « pont de.



Electricite. Exercices et methodes

On parle alors de régimes transitoires. Dans un circuit en régime continu les tensions et courants dans le circuit sont en général continus.



Régimes transitoires du deuxième ordre Régimes transitoires du

Nov 24 2017 Figure 2 – Chronogramme de la tension u(t) dans le circuit RLC parallèle. Exercice 3 : Viscosimètre oscillant. 1 Étudions le mouvement de la ...



SERIE DEXERCICES N° 3 : ELECTROCINETIQUE : CIRCUITS

CIRCUITS LINEAIRES EN REGIME TRANSITOIRE. Circuits linéaires du premier ordre. Exercice 1 : intensité dans un circuit inductif.



Electrocinétique MPSI

Méthodes. Exercices résolus. Électrocinétique. Physique. G. ROSSET. MPSI Ces résultats seront utilisés pour l'étude des régimes transitoires au chapitre ...



Physique MPSI PTSI méthodes et exercices

Énoncés des exercices. 26. Du mal à démarrer ? 35. Corrigés des exercices. 37. CHAPITRE 3. RÉGIME TRANSITOIRE DU PREMIER ORDRE. 46. Méthodes à retenir.



Physique Le compagnon MPSI-PTSI

Tests et exercices. 107. Corrigés des exercices. 111. 8. Régime transitoire dans les circuits linéaires. 117. 8.1 Aborder un problème de régime transitoire.



Circuits en régime transitoire

W Exercice 1. ¥ Préliminaires. En régime continu un condensateur se comporte comme un interrupteur ouvert et une bobine comme un interrupteur fermé.

2008-2009Exercices d"´Electrocin´etique

?R´egime transitoire et r´egime forc´e continuE4? ???Ex-E4.1Circuit d"ordre 1 (1)

ExprimeriR(t) etiL(t), puis tracer les

courbes repr´esentatives.

On poseraτ=L

R. t R L0I i K iLRII 0 I 0

R´ep :iL(t) =I?

1-exp?

-tτ?? etiR(t) =Iexp? -tτ? ???Ex-E4.2CircuitRLCparall`ele

1)D´eterminer l"´equation diff´erentielle v´erifi´ee parien fonction de :

0=1 ⎷LCetQ0=RCω0.

2)On poseλ=1

2Q0. D´etermineri(t) sachant quei(t= 0) =i0?= 0

etu(t= 0) = 0. On distinguera trois cas :a)λ= 1,b)λ >1 etc)λ <1. R´ep : 1)d2idt2+ω0Qdidt+ω20i= 0 avecω0=1⎷LCetQ=RCω0=RLω0;

2.a)λ >1 :i(t) =i0

2.b)λ= 0 :i(t) =i0(1 +λω0t)e-λω0t;

2.c)λ <1 :i(t) =i0(cosωt+sinωt

τω)exp?

-tτ? ???Ex-E4.3Circuit d"ordre 1 (2) Dans le circuit repr´esent´e ci-contre on ferme l"interrup- teurK`a la datet= 0, le condensateur ´etant initialement d´echarg´e.

1)´Etablir l"expression deq(t) o`uqest la charge du

condensateur, en d´eduirei1,i2etien fonction du temps.

2)Calculer `a la datet1l"´energie stock´ee dans le conden-

sateur. E A B i2 C i1i qr R (I) (II)K

3)´Ecrire sous la forme d"une somme d"int´egrales un bilan d"´energie entre les dates 0 ett1.

R´ep : 1)En posantτ=CRr

R+r:q(t) =ECRR+r?

1-exp?

-tτ?? ;i1(t) =Erexp? -tτ? i

2(t) =E

R+r?

1-exp?

-tτ?? ;i(t) =ER+r?

1 +Rrexp?

-tτ?? ???Ex-E4.4Circuit d"ordre 1 (3) D´eterminer l"intensit´e du couranti(t) dans le condensateur, ainsi que la tensionu(t) `a ses bornes sachant que l"on ferme l"interrupteur `a la datet= 0 et que le condensateur n"est pas charg´e initialement.

Repr´esenter graphiquementi(t) etu(t).

R´ep :i(t) =10E

4R+rexp?

-tτ? avecτ=C? R+r4? u(t) =5E 2?

1-exp?

-tτ?? .RK rE r4E r3E r2E qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/9

Exercices d"´Electrocin´etique2008-2009

???Ex-E4.5R´egime transitoire ap´eriodique (*) `At= 0-, les condensateurs sont d´echarg´es. On ferme alors l"interrupteurK.

1)´Etablir l"´equation diff´erentielle eni1.

2)D´eterminer les conditions initialesi1(0+) etdi1

dt(0+).

3)Exprimeri1(t).

i1 C E A B i2i R KRC R´ep : 1)i1v´erifie l"´equation canonique d"ordre 2 avecω0=1RCetQ=13;2)i1(0+) =ERet di1 dt(0+) =-2ECR2;3)i1(t) =ER? ch? 5 2RCt?

1⎷5.sh?

5

2RCt??

exp? -3t2RC? ???Ex-E4.6Bobine et condensateur r´eels en s´erie (1)

1)D´eterminer l"´equation diff´erentielle v´erifi´ee pari.

2)`A quelles conditions le r´egime transitoire est-il :

a) critique; b) ap´eriodique; c) pseudo-p´eriodique?LR RC e K1 2

R´ep : 1)d2id+2ω

R

2C+LR1?

0.

2)ÜCf CoursE4:regarder le signe de Δ, discriminant de l"´equation caract´eritique, et donc la

valeur deQ(Q <1

2,Q=12,Q <12).

???Ex-E4.7Bobine et condensateur r´eels en s´erie (2) : r´egime transitoire pseudo-p´eriodique (*) Le montage ci-contre mod´elise une bobine r´eelle (L, R) en s´erie avec un condensateur r´eel (C, R) initialement d´echarg´e. On ferme l"interrupteurK`a la datet= 0

On impose la relation suivante :τ=L

R=RC.

Initialement :i(0-) = 0 etu(0-) = 0.

C R LR ui EK

1)´Etablir l"´equation diff´erentielle r´egissantu(t), tension aux bornes du condensateur lorsque le

circuit est branch´e, `at= 0, sur un g´en´erateur de tensionE.

2)D´etermineru(t) pourt≥0.

3)D´etermineri(t), intensit´e circulant dans la bobine.

4)Peut-on pr´evoir le r´egime permanent sans calcul? Si oui, d´eterminerU, tension aux bornes

du condensateur, etI, courant dans la bobine, en r´egime permanent.

R´ep : 3)i(t) =E

2R? 1 +? -costτ+ sintτ? exp? -tτ?? ;4)Faire un sch´ema ´equivalent du montage lorsque le r´egime permanent continu est atteint :I=E

2RetU=E2.

???Ex-E4.8Trois r´esistances et une bobine Le circuit ´etudi´e comporte trois r´esistancesR1,R2etR3, une bobine parfaite d"inductanceL, un g´en´erateur def.´e.m.

Eet un interrupteurK.

1)Initialement, la bobine n"est parcourue par aucun cou-

rant.`A l"instantt= 0, on ferme l"interupteurK. L iE K

R3R2R1

→´Etablir la loi d"´evolution dei(t) et d´eterminer le courantIen r´egime permanent dans la

bobine. On poseraτ=L(R2+R3)

R1R2+R2R3+R3R1.

2)Le courant d"intensit´eIest ´etabli, on ouvre `at= 0 (r´einitialisation du temps!).

10http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

→D´eterminer la nouvelle loi donnanti(t) et l"´energie dissip´ee par effetJouledans les r´esistances.

On poseraτ?=L

R1+R2.

R´ep : 1)i(t) =I0?

1-exp?

-t avecI0=ER2R1R2+R2R3+R3R1;

2)i(t) =Iexp?

-t etEJ=12LI2. ???Ex-E4.9Transfert de charge entre deux condensateurs :

Un condensateur de capacit´eCest charg´e sous uneddpE, puis, `at= 0, est reli´e, par fermeture

de l"interrupteurK, `a un circuit (R,C?) s´erie ( le condensateur de capacit´eC?est initialement

non charg´e).

1)D´eterminer les variations du couranti(t) de d´echarge du condensateurC.

2)Calculer la variation d"´energie ΔEdu syst`eme constitu´e

par la r´esistanceRet les deux condensateursCetC?.

3)D´emontrer que|ΔE|est aussi l"´energie dissip´ee par effet

JouleEJdans la r´esistanceR.

4)L"expression de|ΔE|´etant ind´ependante deR, que se

passe-t-il lorsqueRtend vers 0? Ci(t) u'(t) u(t)K RC'

R´ep : 1)i(t) =ERexp?

-tτ? avec1τ=1R?

1C+1C??

;2)ΔE=-12CC ?C+C?E2. ?R´egime sinuso¨ıdal E5? ???Ex-E4/5.1Circuit RLC S´erie

1)Consid´erons le circuit dipolaire RLC s´erie du cours aliment´e par une tension sinuso¨ıdale

(e(t) =E0cos(ωt)).→´Etablir que l"´equation diff´erentielle qui r´egit la tension aux bornes de la

capacit´eCest : LC d2uC dt2+RCduCdt+uC=E0cos(ωt)

→Donner l"expression intrins`eque de cette ´equation diff´erentielle en fonction deQ, facteur de

qualit´e et de la pulsation propreω0.

→Donner l"expression intrins`eque de cette ´equation diff´erentielle en fonction deα, coefficient

d"amortissement et de la pulsation propreω0. 2)

´Etablir queuC(t) =E0?

sin(ω0t)-2⎷ 3 3exp? -12ω0t? sin? 3

2ω0t??

lorsque le circuit v´erifie les quatre conditions suivantes :

(1)le condensateur est initialement d´echarg´e;(2)l"intensit´e est nulle avant la fermeture de

l"interrupteur;(3)la pulsation du g´en´erateur estω=ω0et(4)le coefficient d"amortissement

vautα=1 2. ???Ex-E5.2Addition de deux signaux de mˆeme fr´equence Supposons deux signaux sinuso¨ıdauxS1(t) =S0cos(ωt) etS2(t) =S0sin(ωt). →En utilisant les repr´esentations complexes, calculer la sommeS(t) =S1(t) +S2(t). →Pr´eciser l"amplitude et la phase `a l"origine de ce signal. →Tracer les fonctionsS1(t),S2(t) etS(t); v´erifier le r´esultat pr´ec´edent. →Si ces deux signaux sont deux tensions telles queS1(t) soit la tension aux bornes d"une

r´esistanceRetS2(t) la tension aux bornes d"un second dipˆole, en d´eduire la nature de ce second

dipˆole. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/11

Exercices d"´Electrocin´etique2008-2009

???Ex-E5.3R´eseau `a trois mailles On consid`ere le r´eseau `a trois mailles ind´ependantes, repr´esent´e ci-contre, aliment´e par la source de tension al- ternative def.´e.m.:e(t) =E⎷

2cosωt.

La fr´equence du g´en´erateur est r´egl´ee de mani`ere `a avoir :

Lω=1

Cω=R.

C 2R e LR2LM N D´eterminer toutes les caract´eristiques de l"intensit´edu courant dans la r´esistanceR.

A. N. :E= 20V;R= 10 Ω.

R´ep :i(t) = 0,686cos(ωt-1,82)A, o`u 1,82rad= 104◦. ???Ex-E5.4Mod´elisation de Th´evenin On consid`ere le circuit suivant aliment´e entreAetBpar une source de tension alternative sinuso¨ıdale def.´e.m.: e(t) =E⎷

2cosωt.

D´eterminer les caract´eristiques du g´en´erateur de tension (mod`ele deTh´evenin) ´equivalent entreFetDsachant queωest telle que :LCω2= 1 etRCω= 1C R e LF DRA B

R´ep :

E

Th=2-j5E?eTh(t) =E?2

5cos(ωt-0,464)A, o`u-0,464rad= arctan?

-12? =arg(2-j).

Cettef.´e.m.est en s´erie avecZ

´eq=R´eq+1jC´eqω?soit une r´esistanceR´eq=3R5en s´erie avec une capacit´eC´eq=5C 4. ???Ex-E5.5Calculs d"imp´edances

D´eterminer

l"imp´edance complexe Z du r´eseau dipolaire entre les bornesAet

Bdans les quatre cas

suivants.

En d´eduire `a chaque

fois l"imp´edance r´eelleZainsi que le d´ephasage de la tensionupar rapport au couranti. L i CR A B uLiC A B u L i CR A B u i C A B u Ra c b d R R C ???Ex-E5.6Circuit RLC parall`ele en r´egime sinuso¨ıdal

Exprimer la tensionu

aux bornes d"un r´eseau dipolaire constitu´e d"une r´esistance en parall`ele avec une bobine en parall`ele avec un condensateur en fonction deR,L,C,wet dei ≡I0exp(jωt) (intensit´e fournie au dipˆole).

V´erifier que l"´etude de la r´esonance en tensionude ce cirduit RLCparall`elelorsqu"on applique

un courantisinuso¨ıdal est identique `a celle de la r´esonance en courant dans le circuit RLCs´erie.

Exprimer alorsω0, la pulsation propre,Q?, le facteur de qualit´e du circuitRLCparall`ele ainsi queα?≡1

2Q?, son coefficient d"amortissement.

R´ep :ω0=1

⎷LCetQ?=RCω0.

12http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

???Ex-E5.7

1)ExprimerU

en fonction deI,Z,L,Cetω, pulsation du r´egime sinuso¨ıdal impos´e `a ce circuit.

2)`A quelle condition surL,Cetω,U

Iet le d´ephasage entreu

etine d´ependent-ils pas deZ? eZUiUC L

R´ep : 2)LCω2= 1.

???Ex-E5.8On alimente le dipˆoleABavec une tension si- nuso¨ıdale de pulsationω.→D´eterminer l"imp´edance complexe deAB. Tracer|Z |=Z(ω), puis montrer que cette courbe pr´esente deux singularit´es pour les pulsationsω1etω2(ω1< ω2).

R´ep :Z

=1-L1C1ω2j[(C0+C1)ω-L1C1C0ω3]. L AB C C0 1 1 ???Ex-E5.9Mod´elisation d"un condensateur r´eel

On consid`ere un di´electrique imparfait (isolant imparfait) de permittivit´e complexe?=?0.(x?-

jx ??) avecx?etx??deux r´eels. C"est l"isolant d"un condensateur de capacit´eC=? ?0C0. Ce condensateur est soumis `a une tension sinuso¨ıdaleu(t) =Um.cos(ωt). →Exprimer l"imp´edance complexe du condensateur.

→En d´eduire qu"on peut le consid´erer comme l"association d"un condensateur parfait de capacit´e

Cet d"une r´esistanceRqu"on exprimera.

R´ep :RetCen parall`ele, avec :R=1

x??C0ωetC=C0x?. ???Ex-E5.10 Sachant quee=Em.cos(ωt), trouver la condition pour quei et u soient en phase quelle que soitω.

R´ep :R=?

L

C, alorsUI=R.

CR RL u i e ???Ex-E5.11Puissance ´electrique (1)On donne : R= 10 Ω,L= 100μH,C= 200μF,ω= 5.106rad.s-1, E eff= 5V. D´eterminer et calculer : l"imp´edance complexe du dipˆoleAB, le facteur de puissance et la puissance moyenne dissip´ee.RL i e ABC

R´ep :cos?= 0,02 et

= 1mWcar :

Z =R+j?

Lω-1Cω?

; cos?=R? R2+?

Lω-1Cω?

2;

=R.E2effR2+?

Lω-1Cω?

2 ???Ex-E5.12R´eponse harmonique d"un dipˆole D´eterminer la r´eponse harmoniqueu(t) du dipˆoleAB(Ru//R) lorsqu"il est soumis `a l"excitation sinuso¨ıdalee(t) =Em.cos(ωt). R´ep :u(t) =Umcos(ωt+?u) avec, en posantω0=1 RC: U m=Emω ?ω20+ω2et?= arctanω0ω. C

Rue(t)Ru(t)

A B qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/13

Exercices d"´Electrocin´etique2008-2009

???Ex-E5.13Adaptation d"imp´edance (1) Pour transmettre une puissance maximale du g´en´erateur (E ,Rg) `a l"imp´edance de charge (d"utilisateur)Ru?= R g, on intercale entre le g´en´erateur et l"utilisateur un quadipˆole r´ealis´e avec une bobine d"inductanceLet un condensateur de capacit´eC. →Montrer que le quadripˆole permet l"adaptation d"imp´edance souhait´ee lorsqueRu< Rg. ER gRuL C

CalculerLetCen fonction deRu,Rgetωpulsation du g´en´erateur, afin de r´ealiser un transfert

maximal d"´energie.

Solution Ex-E5.13

•Le g´en´erateur est branch´e sur un dipˆole constitu´e d"une bobine en parall`ele avec un conden-

sateur en s´erie avec une r´esistance. AppelonsZ son imp´edance ´equivalente (Z=jLω//(Ru+1 jCω)). La puissance moyenne re¸cue par un condensateur ou une bobine est nulle (== 0;

ÜCf CoursE5.V.1etE5.VI). Le quadripˆole intercal´e entre le g´en´erateur et le r´ecepteurRu´etant

constitu´e de tels dipˆoles r´eactifs, la puissance fournie par le g´en´erateur est transmise sans pertes

`a l"utilisateur (Ru).

Donc" chercher la condition de transfert maximal d"énergie entre le générateur etRu» revient à

chercher la condition de transfert maximal d"énergie entre le générateur et le dipôle d"impédance

Z

Or pour que le générateur fournisse une puissance maximale, il fautqu"il soit branché sur une

impédanceZ telle que :Z=Zg?=Rg(condition d"adaptation d"impédance;ÜCfE5.V.4) • ExprimonsZ :Z=jLω//? R u+1jCω? =jLω? R u+1 jCω? Ru+j?

Lω-1Cω?

D"où, en regroupant les termes réels et imaginaires : R gRu-L C? +jω?

L(Rg-Ru)-RgCω2?

= 0

L"égalité à zéro entraîne :

L

C=RgRuetLC=Rgω2(Rg-Ru)>0?Rg> Ru

On en déduit :L=Rgω?

Ru

Rg-RuetC=1ω?Ru(Rg-Ru)

???Ex-E5.14Adaptation d"imp´edance (2) Une installation électrique est alimentée sous une tension efficaceUeff= 220V. Elle consomme une puissanceP= 12kW. La fréquence vautf= 50Hzet l"intensité efficaceIeff= 80A.

1)Sachant que cette installation est du typeinductif, calculer la résistanceRet l"inductance

propreLqui, placées en série et avec la même alimentation, seraient équivalentes à l"installation.

2)Calculer le facteur de puissance de cette installation. Calculer la capacitéCà placer en

parallèle sur l"installation pour relever le facteur de puissance à la valeur0,9.

Rép : 1)Établir queR=

I2eff?1,9 Ω;L=1ω?

U2eff

I2eff-

I4eff?6,4mH;2)Astuce :

quotesdbs_dbs22.pdfusesText_28
[PDF] exercices repérage dans le plan 5ème

[PDF] exercices représentation des forces

[PDF] exercices reproduction humaine terminale

[PDF] exercices reproduction humaine terminale pdf

[PDF] exercices resolues de cinetique chimique

[PDF] exercices résolus d'électrostatique

[PDF] exercices resolus de mecanique des fluides

[PDF] exercices résolus en macroeconomie

[PDF] exercices résolus sur atomistiques

[PDF] exercices saut en hauteur

[PDF] exercices saut en longueur primaire

[PDF] exercices schema electrique industriel

[PDF] exercices son g ce1

[PDF] exercices spé maths terminale s corrigé

[PDF] exercices statistiques 3ème brevet