[PDF] Chapitre II Interpolation et Approximation





Previous PDF Next PDF



interpolation dans un maillage et visualisation par isovaleurs

Tableau 1 -Exemple de bordereau de données du logiciel INGRID. Tableau 2 -Exemple de valeurs Figure 1 2 - Interpolation linéaire double à mailles fines.



Chapitre II Interpolation et Approximation

linéaire (`a matrice du type Vandermonde ; ici écrit pour n = 2) c + bx0 + ax2 La preuve est simple: supposons par exemple pour n = 3



Grenoble Sciences

Exercice 4-2 : Interpolation linéaire vs quadratique. Les pivots n'étant pas équidistants il est commode de construire le polynôme de Lagrange.



Linear interpolation example

7 janv. 2010 Linear interpolation example. Today's date is December 5 2005. A bank needs to determine a USD Libor rate with a maturity of January 19



III INTERPOLATION ET APPROXIMATION DE FONCTIONS

Interpolation linéaire par morceaux Par exemple la fonction p peut être polynomiale : ... Prenons l'exemple d'une interpolation linéaire n = 1.



Calcul dune médiane par interpolation linéaire Énoncé La taille des

Calcul d'une médiane par interpolation linéaire. Énoncé. La taille des élèves d'une classe de seconde est résumée dans le tableau suivant :.



Cours V : Analyse numérique Interpolation et Résolution déquation

consiste à trouver un modèle mathématique (polynomial trigonométrique



Cours V : Analyse numérique Interpolation et Résolution déquation

consiste à trouver un modèle mathématique (polynomial trigonométrique



TRAITEMENT DIMAGES - CORRECTION GÉOMÉTRIQUE ET

EXEMPLES. Exemples de distorsions géométriques Exemple. • Interpolation au voisin le plus près : 200 ... Interpolation linéaire f(x y) = ax + by + c.



Analyse Numérique

Exemple 1.3 : L'addition numérique n'est pas associative : en virgule ottante à n chiffres significatifs (a + b) Exemple 3.1 : Interpolation linéaire.



[PDF] Chapitre II Interpolation et Approximation

II 1: Polynôme d'interpolation de degré 5 Solution En insérant les conditions (1 2) dans (1 1) le probl`eme se transforme en un syst`eme linéaire (`a 



[PDF] Chapitre II Interpolation et Approximation

Exemple 1 3 Pour les donn?es de la fig II 1 les diff?rences divis?es sont pr?sent?es dans le tableau II 1 Le polyn?me d'interpolation est alors donn? par



[PDF] Interpolationpdf

Afin de comprendre le principe de l'interpolation par les splines voyons d'abord l'exemple de la spline linéaire 1 Les splines ont été largement utilisées 



[PDF] Interpolation linéaire

Interpolation linéaire I) Etude d'un exemple On se propose de trouver une valeur approchée de 620 3 1) Calculer n³ pour n entier compris entre 3 et 10



Formule dinterpolation linéaire

Dans une table numérique la formule d'interpolation permet de calculer les valeurs intermédiaires Des exemples sont donnés L'interpolation linéaire 



[PDF] III INTERPOLATION ET APPROXIMATION DE FONCTIONS

Prenons l'exemple d'une interpolation linéaire n = 1 On veut : a0 + a1x0 = y0 a0 + a1x1 = y1 Analyse Numérique – R Touzani



[PDF] I Interpolation - Institut de Mathématiques de Toulouse

I Interpolation Cours de Claudia NEGULESCU Le probl`eme de l'approximation d'une fonction f intervient dans plusieurs situations comme par exemple :



[PDF] Feuille de TD 1 - Correction : Interpolation de Lagrange

Calculer les polynômes d'interpolation de Lagrange aux points suivants : Correction : C'est un exercice classique d'algèbre linéaire que vous avez peut 



[PDF] Cours V : Analyse numérique Interpolation et Résolution déquation

Le modèle est optimisé entre tous les doublets ? lissage régression 1/ Interpolation linéaire Définition : Entre deux valeurs successives des abscisses 

  • Comment se fait l'interpolation linéaire ?

    L'interpolation linéaire est la méthode la plus simple pour estimer la valeur prise par une fonction continue entre deux points déterminés (interpolation). Elle consiste à utiliser pour cela la fonction affine (de la forme f(x) = m.x + b) passant par les deux points déterminés.
  • Comment interpoler entre deux valeurs ?

    Trouvez mathématiquement la valeur interpolée.

    1En insérant les valeurs de x, x1 et x/2 dans l'équation, cela donne(37 – 30)/(40 -30), qui se réduit à 7/10 ou 0,7. 2En rempla?nt les valeurs de y1 et y2 à la fin de l'équation, cela donne(5 – 3) ou 2. 3En multipliant 0,7 par 2, cela donne un produit de 1,4.
  • Comment faire une extrapolation linéaire ?

    L'extrapolation linéaire consiste à prolonger l'interpolation des données par une droite tangente à la fin des données connues et à l'étendre. Elle ne donne de bons résultats que si les données montrent une corrélation proche de la linéarité.
  • En se basant sur (1), nous avons vu que le polynôme d'interpolation P1 peut sécrire: P1(x) = f(x0) + f(x1) ? f(x0) x1 ? x0 (x ? x0) , En notant f[x0,x1] = f(x1) ? f(x0) x1 ? x0 , et en remarquant que f(x0) n'est autre que P0(x), on a : P1(x) = P0(x) + f[x0,x1](x ? x0) .
Chapitre II Interpolation et Approximation

Chapitre IIInterpolation et ApproximationProbl`eme de l'interpolation :on recherche des fonctions "simples" (polynˆomes, polynˆomes par

morceaux, polynˆomes trigonom´etriques) passant par (ou proche) des points donn´es (x0,y0),(x1,y1),...,(xn,yn),(0.1) c.-`a-d., on cherchep(x)avecp(xi) =yipouri= 0,1,...,n. Si les valeurs deyisatisfontyi=

f(xi)o`uf(x)est une fonction donn´ee, il est alors int´eressant d'´etudier l'erreur de l'approximation

f(x)-p(x) = ?(0.2)

Bibliographie de ce chapitre

J.H. Ahlberg, E.N. Nilson & J.L. Walsh (1967):The Theory of Splines and Their Applications.

Academic Press, New York. [MA 65/4]

C. de Boor (1978):A Practical Guide to Splines. Springer-Verlag. [MA 65/141] G.D. Knott (2000):Interpolating Cubic Splines.Birkh¨auser. [MA 65/431] H.J. Nussbaumer (1981):Fast Fourier Transform and Convolution Algorithms. Springer-Verlag. H. Sp¨ath (1995):One Dimensional Spline Interpolation.AK Peters. [MA 65/362]

II.1 Diff

´erences divis´ees et formule de Newton

``...tho' I will not undertake to prove it to others." (Newton, letter to Collins, Nov. 8, 1676 ; publ. Cotes 1711, p. 38) Probl `eme (Newton 1676).´Etant donn´es lesn+ 1points (0.1), chercher un polynˆome p(x) =axn+bxn-1+cxn-2+...(1.1) de degr´enqui satisfasse p(xi) =yipouri= 0,1,...,n.(1.2)

Pour un exemple voir la fig.II.1.

Interpolation et Approximation25

2 4 6 8 10

-50510 p(x) FIG. II.1:Polynˆome d'interpolation de degr´e5 Solution.En ins´erant les conditions (1.2) dans (1.1), le probl`eme se transforme en un syst`eme lin´eaire (`a matrice du type Vandermonde; ici ´ecrit pourn= 2) c+bx0+ax20=y0 c+bx1+ax21=y1 c+bx2+ax22=y2soustraire et diviserb+a(x1+x0) =y1-y0 x1-x0 b+a(x2+x1) =y2-y1 x2-x1(1.3) et, si on soustrait et divise une deuxi`eme fois, on trouve a=1 x2-x0? y2-y1x2-x1-y1-y0x1-x0?.(1.4)

Le mˆeme calcul a ´et´e effectu´e pourn= 4dans un manuscript de Newton datant de 1676; comme `a

l'accoutum´ee, Newton refusa de le publier (voir citation). Cotes le publia comme dernier chapitre

Methodus differentialisdu livreAnalysis per quantitatum series, fluxiones, ac differentias, Londini

1711 (voir fac-simil´e en figure II.2

1). FIG. II.2:Fac-simil´e du calcul de Newton pour le probl`eme de l'interpolation Dans tous ces calculs apparaissent les "diff´erences divis´ees" :

1On peut observer que Newton maˆıtrise les ´eliminations de variables dans un syst`eme lin´eaire avec brio ; plus tard,

toute la gloire pour cette m´ethode reviendra `a Gauss.

26Interpolation et Approximation

D ´efinition 1.1 (diff´erences divis´ees)Pour(xi,yi)donn´es (xidistincts) on d´efinit y[xi] :=yi

δy[xi,xj] :=y[xj]-y[xi]

xj-xi

2y[xi,xj,xk] :=δy[xj,xk]-δy[xi,xj]

xk-xi

3y[xi,xj,xk,xl] :=δ2y[xj,xk,xl]-δ2y[xi,xj,xk]

xl-xietc. tion (voir citation) : Th ´eor`eme 1.2 (formule de Newton)Le polynˆome d'interpolation de degr´enqui passe par les n+ 1points(x0,y0),(x1,y1),...,(xn,yn), o`u lesxisont distincts, est unique et donn´e par p(x) =y[x0] + (x-x0)δy[x0,x1] + (x-x0)(x-x1)δ2y[x0,x1,x2] +...+ (x-x0)(x-x1)·...·(x-xn-1)δny[x0,x1,...,xn].(1.5) D

´emonstration.Nous utilisons deux id´ees :

1. On proc

`ede par r´ecurrence.Pourn= 1, et en tenant compte des premiers deux points, nous avons p(x) =y0+ (x-x0)y1-y0 x1-x0.(1.6)

Il s'agit d'une formule bien connue des G´eom`etres (voirΓ?ωμ?τρ´ια, figure II.1.8).

Puis, pourn= 2, en rajoutant le point(x2,y2), on essaie de bˆatir l`a dessus un polynˆome de degr´e 2, qui ne change plus les valeurs dey0et dey1. Il est donc de la forme p(x) =y0+ (x-x0)y1-y0 x1-x0+a·(x-x0)(x-x1) 2 405 (1.7)

o`u le coefficientaest `a d´eterminer. Mais il s'agit du coefficient dex2dep(x): nous savons d´ej`a

(voir (1.4)) que celui-ci est la deuxi`eme diff´erence divis´eeδ2y[x0,x1,x2]. Pour d´emontrer le cas g´en´eral, nous supposons que p

1(x) =y[x0] + (x-x0)δy[x0,x1] +...+ (x-x0)·...·(x-xn-2)δn-1y[x0,x1,...,xn-1]

soit le polynˆome unique de degr´en-1qui passe par(xi,yi)pouri= 0,1,...,n-1. Alors, comme auparavant, le polynˆomep(x)a n´ecessairement la forme p(x) =p1(x) +a·(x-x0)(x-x1)·...·(x-xn-1), o`uaest d´etermin´e parp(xn) =yn.

2.L'id

´eedeAitken-Neville.Pourmontrerquea=δny[x0,x1,...,xn], cequiach`evelad´emonstra- tion, nous consid´erons ´egalement le polynˆome de degr´en-1 p

2(x) =y[x1] + (x-x1)δy[x1,x2] +...+ (x-x1)·...·(x-xn-1)δn-1y[x1,x2,...,xn],

Interpolation et Approximation27

2 4 6 8 10

-10-50510 p(x) p 2(x)p 1(x) FIG. II.3:Les polynˆomesp1(t),p2(t)etp(t)de l'algorithme d'Aitken-Neville qui passe par(xi,yi)pouri= 1,...,n(voir figure II.3). Ensuite, on pose (Aitken - Neville, 1929, 1932
2) p(x) =1 xn-x0?(xn-x)p1(x) + (x-x0)p2(x)?.(1.8)

Il s'agit d'un polynˆome de degr´en, qui satisfait la condition (1.2) pour le pointx0(ici, le facteur

(x-x0)est nul), pour le pointxn(ici, le facteur(x-xn)est nul), et pour les pointsx1,...,xn-1

(ici, les deux polynˆomesp1etp2sont ´egaux `ayi). Le polynˆome d´esir´e est donc trouv´e.

En consid´erant le coefficient dexndans (1.8), nous obtenons a=1 ce qui d´emontre la formule (1.5). TAB. II.1:Diff´erences divis´ees pour les donn´ees de la fig.II.1 xiyiδy δ2y δ3y δ4y δ5y

0-1121 3/85/2-77/12046-17/6 167/960-6 3/4-287/960050 5/3-1/82/3-1/482 1/63/2105

Exemple 1.3Pour les donn´ees de la fig.II.1, les diff´erences divis´eessont pr´esent´ees dans le

tableau II.1. Le polynˆome d'interpolation est alors donn´e par p(x) =-1 +x+x(x-2)3 -x(x-2)(x-4)(x-5)(x-8)287 9600.
ou mieux encore pour la programmation (ou le calcul `a la main) p(x) =-1 +x?1 + (x-2)?3

8+ (x-4)?-77120+ (x-5)?167960-(x-8)2879600????.

2Il fallait plus de deux si`ecles pour avoir cette id´ee !...

28Interpolation et Approximation

Remarque.L'ordre des{xi}n'a aucune importance pour la formule de Newton (1.5). Si l'on

permute les donn´ees(xi,yi), on obtient ´evidemment le mˆeme polynˆome. Pour l'exempleci-dessus

et pour les{xi}choisis dans l'ordre{4,5,2,8,0,10}, on obtient ainsi p(x) = 6 + (x-4)?-6 + (x-5)?-17

6+ (x-2)?34+ (x-8)?167960-x2879600????.

En observant queδny[xi0,...,xin]est une fonction sym´etrique de ses arguments (par exemple,

2y[x2,x3,x1] =δ2y[x1,x2,x3], voir exercices), on peut utiliser les valeurs calcul´ees dans le

tableau II.1. Sixest entre4et5, les deux facteursx-4etx-5dans laformulepr´ec´edente sont relativement petits, ce qui favorise la diminution des erreurs d'arrondi.

II.2 Erreur de l'interpolation

Supposons que les points(xi,yi)soient sur le graphe d'une fonctionf: [a,b]→IR, c.-`a-d., y i=f(xi), i= 0,1,...,n,(2.1)

´etudions alors l'erreurf(x)-p(x)du polynˆome d'interpolationp(x). Deux exemples sont donn´es

dans la fig.II.4. A gauche, on voit un polynˆome d'interpolation pour la fonctionf(x) = sinx, et

`a droite pour la fonction1/(1 +x2). Pour mieux rendre visible l'erreur, on a dessin´e la fonction

f(x)en une courbe pointill´ee.

0 2 4 6 8

-101 -4 -2 0 2 401 f(x) = sinxf(x) =11 +x2 FIG. II.4:Polynˆome d'interpolation poursinx(gauche) et pour1/(1 +x2)(droite) Lesr´esultatssuivantssontdus `aCauchy(1840,Surlesfonctionsinterpolaires,C.R. XI,p. 775-789,

Oeuvresser. 1, vol. V, p. 409-424). Commenc¸ons par une relation int´eressante entre les diff´erences

divis´ees pour (2.1) et les d´eriv´ees de la fonctionf(x). Lemme 2.1Soitf(x)n-fois diff´erentiable etyi=f(xi)pouri= 0,1,...,n(xidistincts). Alors, il existe unξ?(minxi,maxxi)tel que ny[x0,x1,...,xn] =f(n)(ξ) n!.(2.2) D ´emonstration.Soitp(x)le polynˆome d'interpolation de degr´enpassant par(xi,yi)et notons d(x) =f(x)-p(x). Par d´efinition dep(x), la diff´erenced(x)s'annule enn+ 1points distincts : d(xi) = 0pouri= 0,1,...,n.

Interpolation et Approximation29

Commed(x)est diff´erentiable, on peut appliquernfois le th´eor`eme de Rolle (voir le cours d'Analyse I) et on en d´eduit que d ?(x)anz´eros distincts dans(minxi,maxxi).

Le mˆeme argument appliqu´e `ad?(x)donne

d ??(x)an-1z´eros distincts dans(minixi,maxixi), et finalement encore d (n)(x)a1z´ero dans(minixi,maxixi).

Notons ce z´ero ded(n)(x)parξ. Alors, on a

f (n)(ξ) =p(n)(ξ) =n!·δny[x0,x1,...,xn].(2.3)

La deuxi`eme identit´e dans (2.3) r´esulte du fait queδny[x0,x1,...,xn]est le coefficient dexndans

p(x).

Th´eor`eme 2.2Soitf: [a,b]→IR(n+ 1)-fois diff´erentiable et soitp(x)le polynˆome d'interpo-

lation de degr ´enqui passe par(xi,f(xi))pouri= 0,1,...,n. Alors, pourx?[a,b], il existe un

ξ?(min(xi,x),max(xi,x))tel que

f(x)-p(x) = (x-x0)·...·(x-xn)·f(n+1)(ξ) (n+ 1)!.(2.4) D ´emonstration.Six=xipour un indicei? {0,1,...,n}, la formule (2.4) est v´erifi´ee car p(xi) =f(xi). Fixons alors un¯xdans[a,b]qui soit diff´erent dexiet montrons la formule (2.4) pourx= ¯x.

L'id´ee est de consid´erer le polynˆome¯p(x)de degr´en+ 1qui passe par(xi,f(xi))pouri=

0,1,...,net par(¯x,f(¯x)). La formule de Newton donne

¯p(x) =p(x) + (x-x0)·...·(x-xn)·δn+1y[x0,...,xn,¯x].(2.5)

Si l'on remplace la diff´erence divis´ee dans (2.5) parf(n+1)(ξ)/(n+ 1)!(voir le lemme pr´ec´edent)

et si l'on posex= ¯x, on obtient le r´esultat (2.4) pourx= ¯xcar¯p(¯x) =f(¯x). Comme¯xest

arbitraire, la formule (2.4) est v´erifi´ee pour toutx. Exemple 2.3Dans la situation de la fig.II.4, on an+ 1 = 7. Comme la7`emed´eriv´ee desinxest born´ee par1, on a que 7!, par exemple Pour le deuxi`eme exemple,f(x) = 1/(1 +x2), la7`emed´eriv´ee est donn´ee par f (7)(x) =-8!·(x+ 1)(x-1)x(x2-2x-1)(x2+ 2x-1) (1 +x2)8, qui est maximale pourx≈ ±0.17632698. On obtient ainsi ?p(x)-1 Alors, l'erreur peut ˆetre4392fois plus grande que pour l'interpolation desinx.

30Interpolation et Approximation

Convergence de l'interpolation.

•Une grande surprise en math´ematiques fut la d´ecouverte, d'abord par Riemann (1854), puis par Weierstrass (1872), de l'incroyable complexit´e qu'ont certaines fonctions continues, p.ex., de n'ˆetre nulle part diff´erentiables; •puis la deuxi`eme grande surprise: toutes ces fonctions, aussi compliqu´ees qu'elles puissent

ˆetre, peuvent ˆetre approch´ees, aussi pr`es qu'on le veutet uniform´ement, par les fonctions les

plus simples qui existent, des polynˆomes (Weierstrass 1885; voir [HW96],§III.9); •personnenepensait alorsque lespolynˆomesd'interpolation,si on prend seulementles points suffisamment proches les uns des autres, ne convergeaient pas vers la fonction donn´ee. La

d´ecouverte que cela n'est mˆeme pas assur´e pour les fonctions rationnelles, les deuxi`emes

fonctions les plus simples, (voir dessin de figure II.5), a choqu´e ´enorm´ement les math´emati-

ciens vers 1900 (en particulier E. Borel).

Carl David Tolm´e Runge (1856-1927), premier prof de maths appliqu´ees de l'histoire et, en tant

qu'´el`eve de Weierstrass, ayant aussi une solide formation en maths pures, fut certes l'homme

id´eal pour expliquer ce ph´enom`ene de mani`ere claire et ´el´egante (1901,Zeitschr. Math. u. Physik

vol. 46). -1 0 1quotesdbs_dbs28.pdfusesText_34
[PDF] analyse numérique pour ingénieurs

[PDF] interpolation et approximation exercices corrigés

[PDF] dérivation numérique exercices corrigés pdf

[PDF] erreur dinterpolation

[PDF] analyse numérique 2ème année math

[PDF] taux de pénetration d'un produit calcul

[PDF] taux de pénetration assurance

[PDF] comment calculer le taux de saturation du marché

[PDF] taux de pénetration économie

[PDF] calcul part de marché marketing

[PDF] taux de saturation définition

[PDF] matrice mc kinsey exercice corrigé pdf

[PDF] matrice bcg 2 pdf

[PDF] matrice bcg exercice corrigé pdf

[PDF] matrice mckinsey cas pratique