[PDF] Exercices de génétique classique – partie II





Previous PDF Next PDF



Lorganisation du conseil génétique au CHU Sainte-Justine

de conseil génétique en milieu hospitalier un exercice de comparaison des structures organisationnelles du service de médecine génétique du CHU Sainte-.



Transmission des maladies génétiques

Le mode de transmission d'une maladie génétique monofactorielle révélée qu'à la mère de l'enfant concerné



Conseiller(ère) en génétique

Diplôme de conseiller en génétique ou autorisation d'exercice de la profession de conseiller en génétique selon l'arrêté du 10 avril 2008. Activités.



Syndromes drépanocytaires majeurs de ladulte

Un conseil génétique est utile et doit être proposé aux couples à risque. Dès les premiers symptômes des exercices musculaires des.



Exercices de génétique classique – partie II

Y a donc 1 chance sur 2 de développer la maladie d'ici 15 ans. On peut lui conseiller de faire un dépistage génétique. Le cas échéant complétez l'arbre



Drepanocytose-FRfrPub125v01.pdf - La drépanocytose

La drépanocytose est une maladie génétique de l'hémoglobine de nouveau un enfant atteint peuvent être précisés lors d'une consultation de conseil.



Protocole National de Diagnostic et de Soins (PNDS) Trisomie 21

Conseil génétique au cours du dépistage prénatal de la trisomie 21 pour toutes les l'insuline et traiter (surtout réduction de l'obésité et exercice ...



Fiche de poste Pôle dactivité Conseiller en génétique F-H

21 mars 2022 Le conseiller en génétique conseille les patients et/ou les familles ... Diplôme de conseiller en génétique ou autorisation d'exercice de la ...



LES CONSEILLERS EN GÉNÉTIQUE AGRÉÉS DU CANADA

en génétique qui reçoivent le titre de conseiller du conseil génétique au Canada. ... l'exercice de la profession ainsi que d'autres initiatives.



Autorisation dexercice en France

auxiliaires médicaux et de conseiller en génétique. - arrêté du 25 août 2010 portant désignation des commissions régionales.



[PDF] Exercices de génétique classique – partie II - première S

Exercices de génétique classique – partie II 1 L'idiotie phénylpyruvique est une maladie héréditaire dont sont atteints plusieurs membres d'une famille 



Exercices de génétique - SVT Lyon

Une série de 30 exercices de génétique proposés par Bernard Damet Lycée Robert Doisneau Vaulx en Velin Ces exercices sont disponibles en téléchargement 



[PDF] Transmission des maladies génétiques - Orphanet

Une maladie génétique peut ne pas être héréditaire : par exemple la plupart des cancers qui résultent de mutations affectant des gènes dans les cellules 



[PDF] FASCICULE DE TD DE GENETIQUE L2pdf

Exercice 2 Chez l'homme le nombre chromosomique est 2n= 46 - Combien de chromosomes trouvera-t-on dans les cellules somatiques du mâle ?



[PDF] UE7 : génétique - 2ATP

CONSEIL GENETIQUE : Si la trisomie 13 est issue d'un mécanisme accidentel c'est-à-dire qu'elle est libre complète 



[PDF] Exercices de génétique et correction

Exercices de génétique et correction • Exercice 1 À partir du document proposé et de vos connaissances expliquez la diversité génétique



Le conseil génétique - Cairn

Conseil génétique diagnostic prénatal test génétique présymptomatique 183 conseillers en génétique ont été diplômés et 153 sont en exercice



[PDF] Cours de Génétique Médicale - Jamiati

EN CONSEIL GENETIQUE ET DIAGNOSTIC PRENATAL • Connaître la particularité et les éléments sur lesquels repose le conseil génétique



Le Conseil génétique

Ainsi le conseil génétique fait partie de l'exercice de la génétique médicale et ne requiert pas d'autre formation ou diplôme que ceux de généticien 



[PDF] Chapitre 2 : Hérédité humaine

Exercice n° 2 : l'hémophilie Un couple vient consulter un médecin pour solliciter un “conseil génétique” : la femme en début de grossesse craint de 

  • Comment faire un exercice de génétique ?

    Vous devez formuler des hypothèses à partir de l'exploitation des données, et les tester par un raisonnement rigoureux. A partir des phénotypes parentaux (P1 et P2) et des descendants (F1), déterminer les gènes impliqués ainsi que leurs allèles.
  • Comment traiter un exercice en génétique ?

    1Méthodologie de la résolution des exercices de génétique en Terminale S.21) Présenter le croisement.32) Analyser la génération F1.43) Déterminer le nombre de gènes impliqués pour la réalisation du caractère (s'il n'est pas précisé dans l'énoncé que le.5caractère est gouverné par un seul gène)
  • Comment savoir si la maladie est récessive ou dominante ?

    Si la maladie survient quand un seul gène est muté, elle est dominante, • Si la maladie survient seulement quand les deux exemplaires sont mutés, elle est récessive.
  • Pour utiliser un échiquier de croisement, on place les gamètes d'un parent dans les cases de la première ligne et ceux de l'autre parent dans les cases de la première colonne. On assemble ensuite les gamètes dans les cases du centre pour obtenir les génotypes possibles des descendants.
Exercices de génétique classique – partie II Exercices de génétique classique - partie II

1. L"idiotie phénylpyruvique est une maladie héréditaire dont sont atteints

plusieurs membres d"une famille, dont voici l"arbre généalogique : - L"allèle responsable de ce trouble héréditaire est-il dominant ou récessif ?

Justifiez.

L"allèle responsable de la maladie est récessif Si l"allèle était dominant, au moins un des deux parents (n°1-2) de la fille n°4 aurait également cet allèle. Par conséquent, il serait également malade. Or, ni 1, ni 2, n"est malade. Seule un mode de transmission récessif est donc possible. Justification également possible avec (9,10,16) ou (11,12,18,19,20). - Le gène concerné est-il situé sur le chromosome X ? Justifiez.

Non, le gène est situé sur un autosome.

Si ce gène était situé sur le chromosome X. Alors la fille n°4 aurait le génotype X mXm (on sait l"allèle récessif). L"un de ces chromosomes venant nécessairement de son père (n°2). Celui-ci aurait donc le génotype X mY, donc le phénotype malade. Or, il ne l"est pas. De même, les garçons de cette femme n°4, aurait reçu un des X m de leur mère, et un Y de leur père (n°3). Ils auraient alors tous le génotype X mY, donc un phénotype malade. Or le n° 11 ne l"est pas. Par conséquent, le gène causant la maladie n"est pas situé sur le chromosome X. - Quel est le lien de parenté entre 11 et 12 ? Que leur auriez-vous conseillé s"ils vous avaient annoncé à l"avance leur intention d"avoir un enfant ?

Ils sont cousins (germains).

Je leur aurais conseillé de faire un test génétique (en tout cas pour n°12), afin de connaitre s"il existe un risque qu"ils aient un enfant atteint de la maladie. Le cas échéant, complétez l"arbre, en indiquant les personnes hétérozygotes. Les parents d"enfants malades sont hétérozygotes : 1, 2, 9, 10, 11, 12. Les enfants sains d"un parent malade sont hétérozygotes : 8, 9, 11. Pour que 12 soit porteur il faut que 5 ou (/et) 6 le soit également. Mais on ignore lequel l"est.

Garçon sain Garçon malade

Fille malade 1

2

3 4 5 6

7 8 9 10 11 12

13

14 15 16 17 18 19 20

Fille saine

2. La transmission du caractère " cheveux roux » a été observé dans une

famille dont l"arbre généalogique est représenté ci-dessous. - Est-ce que ce trait est dominant ou récessif ? Justifiez.

Cet allèle est récessif.

S"il était dominant, alors au moins un des deux parents (n°7-8) de la fille n°14, serait roux (en effet, le fait d"avoir au moins 1 allèle roux dominant, impose le phénotype " roux »). Or, aucun des deux ne l"est. Par conséquent, cet allèle est récessif. Notez qu"ici, seule la " famille » (7,8,14) peut servir à ce raisonnement. Si 7 ou

8 avait été roux, il n"aurait pas été possible de déterminer si l"allèle était récessif

ou dominant, et par conséquent, il aurait été plus probable que l"allèle fusse dominant. - Est-il situé sur le chromosome X ? Justifiez. Non, il est situé sur un autosome. (comme pour l"ex. 1, on se base sur le fait que l"allèle est récessif, comme démontré avant).

S"il était situé sur le chromosome X, le père (n°8) de la fille n°14, aurait été

roux. Car, il aurait transmit son unique chromosome X r (XrY→roux) à sa fille (X rXr→rousse). Alternativement, on aurait pu utiliser la preuve que n°13, fils de n°5, n"est pas roux, tandis que sa mère l"est. Le cas échéant, complétez l"arbre, en indiquant les personnes hétérozygotes.

Les parents non-roux d"enfants roux : 1, 3, 7, 8.

Les enfants (non-roux) de parents roux : 7, 9, 11, 12, 13. Pour les autres (en particulier 15 et 16), on ne peut pas savoir.

Garçon autre couleur Garçon roux

Fille rousse 1

2

3 4 5 6 7 8

9 10 11 12 13 14 15 16

Fille autre couleur

3. L"arbre généalogique suivant présente une famille dont certains individus

sont atteints de surdi-mutité. - Est-ce que l"allèle responsable de cette maladie est dominant ou récessif ?

Justifiez.

L"allèle responsable de la maladie est récessif. La justification est toujours la même : s"il était dominant, au moins un des parents (3,4) d"enfants malades (7,8) serait malade. Il va de soit que dans l"épreuve, vous justifieriez plus longuement votre réponse. - Est-il situé sur le chromosome X ? Justifiez.

Non, il est situé sur un autosome.

Comme pour les autres exercices : s"il était situé sur le chromosome X, le père (n°4) de la fille n°8, serait obligatoirement malade. Comme avant, dans l"épreuve, la justification devra être plus complète. - Mme X (n° 11), née d"un père sourd-muet, attend un enfant. Existe-t-il un risque que son enfant ait cette maladie génétique ? Si oui, à quelle condition ? Oui, mais à l"unique condition que le père (n°10) soit également hétérozygote. On admet qu"en Europe, il y a environ 1 personne sur 30, qui possède le génotype de l"individu 3. - Calculez le pourcentage de risque pour que l"enfant de Mme X naisse sourd-muet. La probabilité qu"un couple d"hétérozygote ait un enfant malade est de 25%

1/4). La probabilité que n°10 soit hétérozygote est donc de 1/30.

Par conséquent, il y a statistiquement (

1/30)x(1/4) =(1/120) que l"enfant attendu soit

malade. Le cas échéant, complétez l"arbre, en indiquant les personnes hétérozygotes.

Les parents sains d"enfants malades : 3, 4

Les enfants sains de parents malades : 11, 12.

1 2 5 8 9

10 11 12 13

Garçon sain Garçon sourd-muet

Fille sourde-muette Fille saine

3 4 6 7

4. La maladie de Huntington est une maladie génétique dont les symptômes

apparaissent vers 40 ans. Voici l"arbre généalogique de Monsieur Y (n° 21),

25 ans.

- Est-ce que l"allèle responsable de cette maladie est dominant ou récessif ?

Justifiez.

Il est très probablement dominant. (En fait, il l"est). En effet, tous les enfants malades ont au moins un de leur parent malade. Si la maladie était (autosomique) récessive, le parent sain devrait être hétérozygote pour que les enfants soient malades. Si on suppose que l"incidence des hétérozygotes dans une population donnée est de 1/30 (ce qui est énorme). On calcule donc la probabilité d"avoir tous ces hétérozygotes (on n"inclut pas ceux issus de parents malades, puisque leur probabilité est de 100%). Sont donc concernés les n°1, 5, 10, 11. Donc (

1/30)4 soit 1 chance sur 810"000 que la

maladie soit récessive. - Est-il situé sur le chromosome X ? Justifiez.

Non, il est situé sur un autosome.

S"il était (dominant et) situé sur le chromosome X, alors les pères malades (X MY→malade) transmettraient automatiquement la maladie à toutes leurs filles, en leur donnant son unique chromosome X (et ce quelque soit les allèles de la mère : X MX?→malade). Or ce n"est pas le cas du père n°6 et sa fille n°13. (Accessoirement, s"il était récessif et situé sur le chromosome X, tous les fils d"une mère malade seraient eux-mêmes malades. Ce qui n"est pas le cas du n°7 par exemple.) - M. Y (n°21) souhaite savoir s"il risque de développer cette maladie. Si oui, calculez les risques (en %). On fait le tableau 16 (nn) x 17 (nM), et on constate que 50% des enfants possible seront (nM) malades. M. Y a donc 1 chance sur 2 de développer la maladie d"ici 15 ans. On peut lui conseiller de faire un dépistage génétique. Le cas échéant, complétez l"arbre, en indiquant les personnes hétérozygotes. Ici les hétérozygotes sont automatiquement malades. Et cela concerne tous les malades (2, 6, 8, 9, 12, 15, 17). Mais on ne les " colorie » pas à moitié.

Garçon sain Garçon malade

Fille malade 1

2 3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20

21

Fille saine

5. Voici un arbre généalogique d"une famille dont certains membres sont

atteints de la maladie de Kennedy. - Est-ce que l"allèle responsable de cette maladie est dominant ou récessif ?

Justifiez.

Evidemment récessif. Pour les mêmes raisons que d"habitude (voir exercices précédents) : → enfants malades ont des parents sains : (1, 2, 7) ou (3, 4, 10) ou (11, 12, 17). - Est-il situé sur le chromosome X ? Justifiez. Oui, il est très probablement situé sur le chromosome X. Premièrement, on peut constater que sur tous les malades, 5 sont des hommes contre seulement 1 fille (c"est un très fort indice, mais pas une preuve en soit). Deuxièmement, toutes les contraintes imposées par ce type de transmission (père malade si fille malade ; tous les fils malades si mère malade) sont respectées. A nouveau, ce n"est pas une preuve absolue, mais cela indique avec de forte probabilité que c"est bel et bien le cas. - Déterminez les génotypes des individus suivants : 1, 2, 3, 4, 5, 6, 9, 11,

12, 14, 16, 18, 20, 22.

Tous les hommes sains sont XNY : 1, 4, 6, (8), 11, 14, 22. Les filles saines issues de père (ou mère) malade sont porteuses (X

NXm) : 16, 20

Les mères saines ayant un fils ou une fille malade sont porteuses (X

NXm) : 2, 3,

9, 12, 16.

Il ne reste plus que le cas de 5 et de 18.

5 : Sachant que sa fille (12) est porteuse (voir avant) et que le père (6) est sain,

alors 5 doit nécessairement être porteuse (X NXm).

18 : Il est impossible de déterminer si 18 est porteuse (X

NXm) ou saine (XNXN).

En effet, son père (11) est sain et sa mère (12) est porteuse, il y a donc une chance sur deux qu"elle soit saine, et de même pour qu"elle soit porteuse.

Garçon sain Garçon malade

Fille malade 1

2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18

19 20 21

Fille saine

22

6. Plusieurs membres de cette famille sont atteints du syndrome MELAS

(Myopathy, Encephalopathy, Lactic Acidosis Syndrome). Voici leur arbre généalogique. - Déterminez le mode de transmission héréditaire de ce syndrome. Justifiez. Ce cas particulier n"est pas traité dans la semestrielle, il ne sera donc pas corrigé ici.

Homme sain

Femme saine

Homme malade

Femme malade

1 2

3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

19 20 21 26 22 23 24 25

quotesdbs_dbs29.pdfusesText_35
[PDF] probabilité conditionnelle arbre pondéré

[PDF] conseil génétique grossesse

[PDF] transmission autosomique récessive

[PDF] probabilité cours simple

[PDF] probabilité tirage carte sans remise

[PDF] producteur secondaire exemple

[PDF] producteur secondaire définition 6eme

[PDF] producteur primaire définition 6eme

[PDF] producteur primaire chaine alimentaire

[PDF] producteur primaire et secondaire définition

[PDF] qu'est ce qu'un producteur primaire svt

[PDF] producteur tertiaire

[PDF] cours de mécanique automobile gratuit

[PDF] mecanique auto essence pdf

[PDF] mécanique automobile livre pdf