[PDF] PRODUIT SCALAIRE DANS LESPACE La projection orthogonale de A





Previous PDF Next PDF



PRODUIT SCALAIRE DANS LESPACE

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite. (AH) soit orthogonale au plan P. Propriété : Le projeté orthogonal d'un 



VECTEURS DROITES ET PLANS DE LESPACE

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite. (AH) soit orthogonale au plan P. Propriété : Le projeté orthogonal 



Formule donnant la distance entre un point et un plan dans lespace

A priori cette distance semble minimale lorsque le point M est le projeté orthogonal H du point A sur le plan P. Voyons pourquoi il en est ainsi !



Géométrie dans lespace Distance dun point à un plan. Distance d

avec H point d'intersection de la droite perpendiculaire au plan ? passant par le point A. H est appelé projeté orthogonal de A sur le plan ?.



Amérique du Nord – Juin 2010 – Série S – Exercice Lespace est

par le point O et orthogonale au plan (. ) ABC . b. Déterminer les coordonnées du point O' projeté orthogonal du point O sur le plan (. ).



Fiche 028 - distance dun point à un plan

On appelle distance d'un point A à un plan la distance minimale entre A et un point du plan. C'est la distance entre A et le projeté orthogonal de A sur 



Chapitre 12 : Géométrie du plan et de lespace.

On appelle ce point le projeté orthogonal de M sur F. Théorème 22. Soit M P A et F une droite ou un plan. On définit la distance de M à F notée dpM



Produit scalaire et plans dans lespace

11 juil. 2021 AC et H le projeté orthogonal de C sur la droite (AB). • Par la norme : ... plan (P) passant par un point A et de vecteurs.



Synthèse de cours PanaMaths (Terminale S) ? Produit scalaire

Soit D l'unique droite de l'espace perpendiculaire à P et passant par M. Son intersection avec le plan P est un point H appelé « projeté orthogonal de M sur 



Espace (III) : Partie 4 Positions relatives droites et plan projeté

Soit (d) une droite passant par un point A et de vecteur directeur ?u et P un plan de vecteur normal ?n . (1) Si ?u et ?n ne sont pas orthogonaux 



[PDF] PROJECTION ORTHOGONALE DUN POINT A SUR UN PLAN (P)

1- PROJECTION ORTHOGONALE D'UN POINT ''A'' SUR UN PLAN (P) : Soit un point ''A'' de l'espace et un plan (P) On trouve dans les projections suivantes :



[PDF] LEÇON N? 28 : Projection orthogonale sur une droite du plan

Projection orthogonale sur une droite du plan projection vectorielle associée Applications (calculs de distances et d'angles optimisation )



3 Projection orthogonale - Lelivrescolairefr

Projection orthogonale d'un point sur un plan ou sur une droite Le projeté orthogonal de M sur P est l'intersection du plan et de la droite de vecteur 



[PDF] projection orthogonale dans le plan - SENREVISION

Construis les points A' B' C' et E' projetés orthogonaux respectifs de A B C et E sur (D) Exercice 4 Pour chacune des figures ci-dessous une droite et 



[PDF] 2 Géométrie plane projeté orthogonal - Maths Langella

Définir et savoir utiliser le projeté orthogonal la distance d'un point à une droite ; traiter des problèmes d'optimisation Aperçu historique :



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - maths et tiques

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite (AH) soit orthogonale au plan P Propriété : Le projeté orthogonal d'un 



[PDF] PRODUIT SCALAIRE DANS LESPACE - maths et tiques

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite (AH) soit orthogonale au plan P Propriété : Le projeté orthogonal d'un 



[PDF] Propriétés de calcul du produit scalaire - Projeté orthogonal

III) Projection orthogonale et produit scalaire: 1) Définition: (d) est une droite et M un point du plan Le projeté orthogonal 



[PDF] Exposé 33 : Projection orthogonale sur une droite dun plan

M' est le point d'intersection de ?avec la perpendiculaire à ?passant par M (car celle-ci n'est pas parallele à ? donc elles sont sécantes Vocabulaire : M' 



[PDF] Partie 4 Positions relatives droites et plan projeté orthogonal I

Soit (d) une droite passant par un point A et de vecteur directeur ?u et P un plan de vecteur normal ?n (1) Si ?u et ?n ne sont pas orthogonaux 

  • Comment trouver le projeté orthogonal d'un point sur un plan ?

    Si on projette un point (appelons le A) sur une droite ou un plan, imaginons que cette droite ou ce plan est le sol et qu'on fait "tomber" le point A dessus. Alors bien évidemment il va tomber verticalement. L'endroit sur lequel il va atterrir est exactement là que se trouve son projeté orthogonal H.
  • u ?v = (u ?p(u))+(p(u)?v). u ?w ) . u ?p(u) et p(u) sont orthogonaux, donc d'après le théorème de Pythagore, u ?p(u)2 +p(u)2 = u 2 d'où d(u,F) = u ?p(u)2 = u 2 ?p(u)2.
1

ORTHOGONALITÉ DANS L'ESPACE

Tout le cours en vidéo : https://youtu.be/pMQBaCqLPsQ Partie 1 : Produit scalaire de deux vecteurs de l'espace

1) Définition et propriétés

Définition : Soit ⃗ et ⃗ deux vecteurs de l'espace. , et trois points tels que ⃗=

et . Il existe un plan contenant les points , et .

On appelle produit scalaire de l'espace de ⃗ et ⃗ le produit ⃗.⃗=

dans le plan . On retrouve alors dans l'espace toutes les propriétés du produit scalaire dans le plan : Propriétés permettant de calculer un produit scalaire : 0 1. =2 2 est le projeté orthogonal du point sur la droite (). On a :

Propriétés algébriques :

Symétrie : ⃗.⃗=⃗.⃗ Bilinéarité : ⃗. =⃗.⃗+⃗.⃗ et ⃗. =⃗.⃗, avec ∈ℝ Identités remarquables : +2⃗.⃗+ Formule de polarisation : 2

Propriété d'orthogonalité :

⃗.⃗=0⟺⃗ et ⃗ sont orthogonaux Méthode : Calculer le produit scalaire dans l'espace

Vidéo https://youtu.be/vp3ICG3rRQk

est un cube d'arête .

Calculer les produits scalaires :

a) b) c)

Correction

a) , étant le projeté orthogonal de sur (). b) =0 car et sont orthogonaux. c) Méthode : Utiliser le produit scalaire pour démontrer une orthogonalité

Vidéo https://youtu.be/8Obh6cIZeEw

Soit un tétraèdre régulier d'arêtes de longueur . Démontrer que les arêtes [] et [] sont orthogonales.

Correction

On va prouver que

=0. 1

Dans le triangle équilatéral ABD, on a :

1 =××cosK 3 N= 2 On démontre de même dans le triangle équilatéral que : 2 2

Ainsi :

=0

Les vecteurs

et sont donc orthogonaux, et donc Les arêtes [] et [] sont orthogonales. 3

2) Produit scalaire dans un repère orthonormé

Définitions :

Une base ⃗,⃗,

1 de l'espace est orthonormée si :

- les vecteurs ⃗,⃗ et sont deux à deux orthogonaux, - les vecteurs ⃗,⃗ et sont unitaires, soit : =1, =1 et 2 2=1. Un repère ;⃗,⃗,

1 de l'espace est orthonormé, si sa base ⃗,⃗,

1 est orthonormée.

Propriétés : Dans un repère orthonormé de l'espace ;⃗,⃗,

1 : Soit ⃗ et ⃗Y [ deux vecteurs de l'espace. +′ et Soit Y [ et Y [ deux points de l'espace.

Démonstration :

1 En effet, on a par exemple dans le plan définit par le couple =1, ⃗.⃗= =1 et ⃗.⃗=⃗.⃗=0 On a, en particulier : Et : 2 2 Méthode : Calculer un produit scalaire à l'aide des coordonnées

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace ; 1.

I est le milieu du segment [].

Les vecteurs

et sont-ils orthogonaux ?

Correction

On a :

Y 1 1 1 [ et Y 1-0 0-1 0,5-0 [ soit Y 1 -1 0,5

Alors :

=1×1+1× -1 +1×0,5=0,5.

Les vecteurs

et ne sont pas orthogonaux. 4

Partie 2 : Orthogonalité

1) Orthogonalité de deux droites

Définition : Deux droites de l'espace sont orthogonales lorsque leurs parallèles passant par un point quelconque sont perpendiculaires.

Exemple :

est un cube. - Les droites () et () sont perpendiculaires. - Les droites () et () sont orthogonales.

Remarques :

- Deux droites perpendiculaires sont coplanaires et sécantes. - Deux droites perpendiculaires sont orthogonales. La réciproque n'est pas vraie car deux droites orthogonales ne sont pas nécessairement coplanaires et sécantes.

2) Orthogonalité d'une droite et d'un plan

Propriété : Une droite est orthogonale à un plan si et seulement si elle est orthogonale à

deux droites sécantes de . 5

Propriété : Si une droite est orthogonale à un plan alors elle est orthogonale à toutes les

droites de .

Démonstration :

Soit une droite de vecteur directeur ⃗ orthogonale à deux droites sécantes

et de . Soit ⃗ et ⃗ des vecteurs directeurs respectifs de et

Alors ⃗ et ⃗ sont non colinéaires et orthogonaux au vecteur ⃗.

Soit une droite quelconque Δ de de vecteur directeur⃗. Démontrons que Δ est orthogonale à .

⃗ peut se décomposer en fonction de ⃗ et ⃗ qui constituent une base de (car non

colinéaires).

Il existe donc deux réels et tels que ⃗=⃗+⃗.

Donc ⃗.⃗=⃗.⃗+⃗.⃗=0, car ⃗ est orthogonal avec ⃗ et ⃗.

Donc ⃗ est orthogonal au vecteur ⃗.

Et donc est orthogonale à Δ.

Exemple :

est un cube. () est perpendiculaire aux droites () et (). () et () sont sécantes et définissent le plan (). Donc () est orthogonal au plan (). Méthode : Démontrer que des droites sont orthogonales

Vidéo https://youtu.be/qKWghhaQJUs

est un triangle équilatéral. est le point d'intersection de ses hauteurs. La droite passant par est orthogonale au plan (). La pyramide est telle que soit un point de la droite . Démontrer que les droites () et () sont orthogonales.

Correction

La droite est orthogonale au plan (). La droite est donc orthogonale à toutes les droites du plan ().

Comme la droite () appartient au plan (), la droite est orthogonale à la droite ().

Par ailleurs, la droite () est perpendiculaire à la droite (). 6

Ainsi, () est orthogonale à deux droites sécantes du plan () : () et .

Donc () est orthogonale au plan ().

Et donc la droite () est orthogonale à toutes les droites du plan ().

La droite () appartient au plan () donc la droite () est orthogonale à la droite ().

Partie 3 : Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul ⃗ de l'espace est normal à un plan si ⃗ est un vecteur

directeur d'une droite orthogonale au plan .

Propriété : Un vecteur non nul ⃗ de l'espace est normal à un plan , s'il est orthogonal à

deux vecteurs non colinéaires de la direction de . Propriété : Soit un point et un vecteur ⃗ non nul de l'espace. L'ensemble des points tels que .⃗=0 est le plan passant par et de vecteur normal 7 Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

est un cube.

Démontrer que le vecteur

est normal au plan ().

Correction

On considère le repère orthonormé ; 1.

Dans ce repère : Y

1 0 0 [,Y 0 0 0 [,Y 0 1 0 [,Y 0 0 1 [,Y 0 1 1

On a ainsi :

Y 0 -1 1 Y 0 1 1 [ et Y -1 0 0 [, donc : =0×0-1×1+1×1=0 =0× -1 -1×0+1×0=0

Donc

est orthogonal à deux vecteurs non colinéaires de (), il est donc normal à

Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, on donne : Y 1 2 -2 [, Y -1 3 1 [ et Y 2 0 -2 Déterminer un vecteur normal au plan ().

Correction

On a :

Y -2 1 3 [ et Y 1 -2 0

Soit un vecteur ⃗

orthogonal au plan (). Il est tel que : =0 =0 soit g -2++3=0 -2=0 ⟺g -2×2++3=0 =2 n u v 8 ⟺g -3+3=0 =2 ⟺g =2 Prenons par exemple, =1 (arbitrairement choisi) alors =1 et =2.

Le vecteur ⃗Y

2 1 1 [ est donc normal au plan ().

Remarque :

La solution n'est pas unique. Tout vecteur colinéaire à ⃗ est solution.

2) Projections orthogonales

Définitions :

Soit un point et une droite de l'espace.

Le projeté orthogonal du point sur la droite est le point appartenant à tel que la

droite () soit perpendiculaire à la droite . Soit un point et un plan de l'espace.

Le projeté orthogonal du point sur le plan est le point appartenant à tel que la

droite () soit orthogonale au plan .

Propriété : Le projeté orthogonal d'un point sur un plan est le point de le plus proche

de .

Démonstration au programme :

Vidéo https://youtu.be/c7mxA0TbVFU

Soit le projeté orthogonal du point sur le plan P. Supposons qu'il existe un point du plan P plus proche de que l'est le point . proche de .

Donc

9

Or, () est orthogonale à P, donc () est orthogonale à toute droite de P.

En particulier, () est perpendiculaire à (). Le triangle est donc rectangle en . D'après l'égalité de Pythagore, on a :

Donc

Donc

On en déduit que est le point du plan le plus proche du point .

Méthode : Utiliser la projection orthogonale pour déterminer la distance d'un point à un plan

Vidéo https://youtu.be/1b9FtX4sCmQ

Soit un cube . On considère le repère orthonormé ;

1.

a) Calculer les coordonnées du projeté orthogonal du point sur le plan ().

b) En déduire la distance du point au plan ().

Correction

a) On cherche à déterminer les coordonnées du point . Dans le repère orthonormé ;

1, on a :

Y 1 0 0 [,Y 0 1 0 [,Y 0 0 1 [,Y 1 1 1

On a alors :

Y -1 1 0 Y 1 0 -1 Y -1 Y -1 -1 -1 Or, () est orthogonale au plan donc le vecteur est orthogonal aux vecteurs et . Soit : =0 -1× -1 +1× -1 +0× -1 =0 -+1+-1=0 =0 1× -1 +0× -1 -1 -1 =0 -1-+1=0

On a ainsi : ==

De plus,

est orthogonal au vecteur , soit : 10 =0 -1 -1 -1 =0 -1 -1 -1 =0 car == -1 -1++ =0 -1

3-1

=0 Donc 3-1=0 car -1≠0 sinon et sont confondus, ce qui est impossible.

Soit : =

On en déduit les coordonnées de : K

1 3 1 3 1 3 N. b) Et ainsi : n o1- 1 3 p +o1- 1 3 p +o1- 1 3 p n

3×o

2 3 p 2 3

3≈1,155

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs22.pdfusesText_28
[PDF] déterminer les coordonnées du point h projeté orthogonal

[PDF] projeté orthogonal d'un vecteur sur une droite

[PDF] coordonnées projeté orthogonal d'un point sur une droite

[PDF] systeme triphasé cours pdf

[PDF] calcul de puissance en monophasé pdf

[PDF] courant triphasé explication

[PDF] courant monophasé et triphasé pdf

[PDF] test effort puissance watt

[PDF] vo2 pic définition

[PDF] test d effort mets max

[PDF] capacité fonctionnelle mets

[PDF] protocole de bruce

[PDF] reserve ventilatoire definition

[PDF] calcul met

[PDF] formule puissance moteur