[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



VECTEURS DROITES ET PLANS DE LESPACE

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite. (AH) soit orthogonale au plan P. Propriété : Le projeté orthogonal d'un 



Amérique du Nord – Juin 2010 – Série S – Exercice Lespace est

Les points A B et C ont pour coordonnées respectives : projection orthogonale d'un point sur une droite



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

Déterminer les coordonnées du point d'intersection de la droite Méthode : Déterminer les coordonnées du projeté? orthogonal d'un point sur une droite.



Exercices de mathématiques - Exo7

Donner les coordonnées des points AB



Chapitre 12 : Géométrie du plan et de lespace.

caractérisé de manière unique par ses coordonnées px yq appelées Comment déterminer le projeté orthogonal d'un point sur une droite ou un plan?



Première S - Projeté orthogonal

III) Projection orthogonale et produit scalaire: 1) Définition: (d) est une droite et M un point du plan. Le projeté orthogonal 



Cours4 Notions de géométrie

coordonnées cartésiennes du même point… il suffit de projeter pour obtenir : z définis ci-dessous où m est le projeté orthogonal de M sur le plan xOy :.



GÉOMÉTRIE REPÉRÉE

Déterminer les coordonnées du point H projeté orthogonal de A sur la droite d. Page 4. 4. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques 



2 Géométrie plane projeté orthogonal.

Savoir calculer des longueurs des angles



PRODUIT SCALAIRE DANS LESPACE

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite. (AH) soit orthogonale au plan P. Propriété : Le projeté orthogonal d'un 



[PDF] LEÇON N? 28 : Projection orthogonale sur une droite du plan

Projection orthogonale sur une droite du plan projection vectorielle associée Applications (calculs de distances et d'angles optimisation )



[PDF] 2 Géométrie plane projeté orthogonal - Maths Langella

Savoir calculer des longueurs des angles des aires et des volumes • Définir et savoir utiliser le projeté orthogonal la distance d'un point à une droite ; 



3 Projection orthogonale - Lelivrescolairefr

Projection orthogonale d'un point sur un plan ou sur une droite Déterminer les coordonnées du projeté orthogonal du point A(5;1;3) sur le plan P



[PDF] Propriétés de calcul du produit scalaire - Projeté orthogonal

Le projeté orthogonal de M sur la droite (d) est le point H intersection de la perpendiculaire à (d) passant par le point M et de (d) 2) Propriété • Les 



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - maths et tiques

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite (AH) soit orthogonale au plan P Propriété : Le projeté orthogonal d'un 



[PDF] PRODUIT SCALAIRE DANS LESPACE - maths et tiques

Il existe un plan P contenant les points et 1) Projection orthogonale d'un point sur une droite On en déduit les coordonnées de :



Déterminer les coordonnées du projeté orthogonal dun - YouTube

20 jui 2020 · Dans cette vidéo tu pourras apprendre à déterminer les coordonnées du projeté orthogonal d'un Durée : 9:18Postée : 20 jui 2020



Trouver le Projeté ORTHOGONAL dun point sur une Droite - YouTube

26 avr 2022 · Les exercices????ici ? https://bit ly/3D4m06X#maths #première #exercicecorrigé Comment trouver l Durée : 6:06Postée : 26 avr 2022



[PDF] Partie 4 Positions relatives droites et plan projeté orthogonal I

Déterminer les coordonnées de leur point d'intersection Exercice 2 Soit ? la droite de représentation paramétrique {x=?7+t y=2t z 



  • Comment trouver le projeté orthogonal d'un point sur une droite ?

    Le projeté orthogonal du point A sur la droite d est le point d'intersection de la droite d et de la perpendiculaire à d passant par A. Le projeté orthogonal du point A sur la droite d est le point de d le plus proche de A : cela signifie que, pour tout point M de d distinct de H, on a AM > AH.
  • Comment trouver les coordonnées d'un projeté orthogonal ?

    Si on note H le projeté orthogonal de A sur le plan P, alors d(A,P)=AH. Ressource affichée de l'autre côté.
  • Une projection orthogonale est une projection dans laquelle tous les rayons visuels partant des sommets de l'objet se dirigent perpendiculairement vers un observateur placé devant la feuille. Cette catégorie de projection comprend la projection à vues multiples et la projection isométrique.
Exercices de mathématiques - Exo7 Exo7

Droites du plan ; droites et plans de l"espace

Fiche corrigée par Arnaud Bodin

1 Droites dans le plan

Exercice 1SoitPun plan muni d"un repèreR(O;~i;~j), les points et les vecteurs sont exprimés par leurs coordonnées dans

R. 1.

Donner un v ecteurdirecteur ,la pente une équation paramétrique et une équation cartésienne des droites

(AB)suivantes : (a)A(2;3)etB(1;4) (b)A(7;2)etB(2;5) (c)A(3;3)etB(3;6) 2.

Donner des équations paramétriques et cartésiennes des droites passant par Aet dirigées par~vavec :

(a)A(2;1)et~v(3;1) (b)A(0;1)et~v(1;2) (c)A(1;1)et~v(1;0) 3. Donner des équations paramétriques et cartésiennes des droites définies comme suit : (a) passant par le point (0;4)et de pente 3, (b) passant par le point (2;3)et parallèle à l"axe desx, (c) passant par le point (2;5)et parallèle à la droiteD: 8x+4y=3. On considère le triangleABCdont les côtés ont pour équations(AB):x+2y=3;(AC):x+y=2;(BC):

2x+3y=4.

1.

Donner les coordonnées des points A;B;C.

2. Donner les coordonnées des milieux A0;B0;C0des segments[BC],[AC]et[AB]respectivement. 3. Donner une équation de chaque médiane et vérifier qu"elles sont concourantes. Montrer qu"il existe un pointM0équidistant de toutes les droitesDl.

Exercice 4

Déterminer le projeté orthogonal du pointM0(x0;y0)sur la droite(D)d"équation 2x3y=5 ainsi que son

symétrique orthogonal. Exercice 51.T rouverune équation du plan (P)défini par les éléments suivants. (a)A,BetCsont des points de(P) i.A(0;0;1),B(1;0;0)etC(0;1;0). ii.A(1;1;1),B(2;0;1)etC(1;2;4). (b)Aest un point de(P),~uet~vsont des vecteurs directeurs de(P) i.A(1;2;1),~u(4;0;3)et~v(1;3;1). ii.A(1;0;2),~u(2;1;3)et~v(1;4;5). (c)Aest un point de(P),Dest une droite contenue dans(P) i.A(0;0;0)et(D):x+yz+3=0

4xy+2z=0

ii.A(1;1;0)et(D):8 :x=t y=1+2t z=13t (d)DetD0sont des droites contenues dans(P) i.(D):x+yz+3=0 xy2=0et(D0):3xyz+5=0 x+yz+1=0 ii.(D):x+2yz+1=0 x+3y+z4=0et(D0):2x+y3z+7=0

3x+2y+z1=0

2. Montrer que les représentations paramétriques sui vantesdéfinissent le même plan : 8< :x=2+s+2t y=2+2s+t z=1stet8 :x=1+3s0t0 y=3+3s0+t0 z=12s0 On considère la famille de plans(Pm)m2Rdéfinis par les équations cartésiennes : m

2x+(2m1)y+mz=3

1. Déterminer les plans Pmdans chacun des cas suivants : (a)A(1;1;1)2Pm (b)~n(2;52 ;1)est normal àPm. (c)~v(1;1;1)est un vecteur directeur dePm 2. Montrer qu"il e xisteun unique point Qappartenant à tous les plansPm. 2 1.

Déterminer la distance du point Aau plan(P)

(a)A(1;0;2)et(P): 2x+y+z+4=0. (b)A(3;2;1)et(P):x+5y4z=5. 2. Calculer la distance du point A(1;2;3)à la droite(D):2x+y3z=1 x+z=1 1. On considèrelepointA(2;4;1), lesvecteurs!u(1;1;1);!v(2;2;4),!w(3;1;1)etlerepère(A;!u;!v;!w).

On notex0;y0etz0les coordonnées dans ce repère. Donner les formules analytiques du changement de

repère exprimantx;y;zen fonction dex0;y0;z0. 2.

On considère la droite (D):yz=3

x+y=2. Utiliser le changement de repère pour donner une équation deDdans le repère(A;!u;!v;!w). 3. Donner les formules analytiques du changement de repère in verse. 1. Définir analytiquement la projection orthogonale sur le plan d"équation 2 x+2yz=1. 2. Définir analytiquement la projection orthogonale sur la droite d"équation x+y+z=1

2xz=2.

3. Donner l"e xpressionanalytique de la projection sur le plan (P)contenant le pointC(2;1;1)et ayant pour vecteurs directeurs~u(0;1;1)et~u0(2;0;1), selon la droite(AB), oùA(1;1;0)etB(0;1;3).

Indication pourl"exer cice2 NLes médianes sont les droites(AA0),(BB0),(CC0).Indication pourl"exer cice3 NLadistanced"unpointM0(x0;y0)àunedroiteDd"équationax+by+c=0estdonnéeparlaformuled(M0;D)=

jax0+by0+c0jpa

2+b2.4

Correction del"exer cice1 N1.(a) Un v ecteurdirecteur est !ABdont les coordonnées sont(xBxA;yByA) = (3;1). Pour n"importe quel vecteur directeur~v= (xv;yv)la pente est le réelp=yvx v. La pente est indépendante du choix du vecteurdirecteur. Ontrouveicip=13 . Uneéquationparamétriquedeladroitedevecteurdirecteur ~vpassant parA= (xA;yA)est donnée parx=xvt+xA y=yvt+yA:Donc ici pour le vecteur directeur!AB on trouve l"équation paramétrique x=3t+2 y=t+3 Il y a plusieurs façons d"obtenir une équation cartésienneax+by+c=0.

Première méthode.On sait queA= (xA;yA)appartient à la droite donc ses coordonnées vérifient

l"équationaxA+byA+c=0, idem avecB. On en déduit le système2a+3b+c=0 a+4b+c=0:Les

solutions s"obtiennent à une constante multiplicative près, on peut fixera=1 et on trouve alors

b=3 etc=11. L"équation est doncx+3y11=0. (b)

On trouv e~v=!AB= (5;3),p=35

etx=5t7 y=3t2 ainsi x+75 =t y+23 =tOn en déduitx+75 =y+23 ; d"où l"équation 3x+5y+31=0. (c) On trouve~v=!AB=(0;3), ladroiteestdoncverticale(sapenteestinfinie)uneéquationparamétrique estx=3 y=3t+6. Une équation cartésienne est simplement(x=3). 2. (a)

Equation paramétrique

x=3t+2 y=t+1 Troisième méthode.Pour une droite d"équation cartésienneax+by+c=0, on sait que~n= (a;b) est un vecteur normal à la droite et donc~v= (b;a)est un vecteur directeur (car alors~v~n=

0). Réciproquement si~v= (b;a)est un vecteur directeur alors une équation est de la forme

ax+by+c=0 pour une certaine constantecà déterminer. Ici on nous donne le vecteur directeur~v= (3;1)donc on cherche une équation sous la forme x+3y+c=0. Pour trouverc, on utilise queAappartient à la droite doncxA+3yA+c=0, ce qui conduit àc=1. Ainsi une équation de la droite estx+3y=1. (b)

On trouv e2 xy+1=0.

(c)

Droite horizontale d"équation (y=1).

3.

V oicijuste les résultats :

(a)y=3x+4, (b)y=3, (c)

8 x+4y=4 (les droites parallèles à 8x+4y=3 sont de la forme 8x+4y=c).Correction del"exer cice2 N1.Le point Aest l"intersection des droites(AB)et(AC). Les coordonnées(x;y)deAsont donc solutions du

système :x+2y=3 x+y=2donné par les équations des deux droites. La seule solution est(x;y) = (1;1). On a doncA= (1;1). On fait de même pour obtenir le pointB= (1;2)etC= (2;0). 2. Notons A0lemilieude[BC]alorslescoordonnéessetrouventparlaformulesuivanteA0=(xB+xC2 ;yB+yC2 12 ;1). De même on trouveB0= (32 ;12 )etC0= (0;32 5

3.(a) Les médianes ont pour équations : (AA0):(y=1);(BB0):(3x+5y=7);(CC0):(3x+4y=6).

(b)

Vérifions que les trois médianes sont concourantes (ce qui est vrai quelque soit le triangle). On

calcule d"abord l"intersectionI= (AA0)\(BB0), les coordonnées du pointId"intersection vérifient

donc le systèmey=1

3x+5y=7. On trouveI= (23

;1).

Il ne reste plus qu"à vérifier queIappartient à la droite(CC0)d"équation 3x+4y=6. En effet

3xI+4yI=6 doncI2(CC0).

Conclusion : les médianes sont concourantes au pointI= (23

;1).Correction del"exer cice3 NNous savons que la distance d"un pointM0(x0;y0)à une droiteDd"équationax+by+c=0 est donnée par la

formuled(M0;D) =jax0+by0+c0jpa 2+b2. Pour une droiteDlla formule donne :d(M0;Dl) =j(1l2)x0+2ly0(4l+2)jp(1l2)2+4l2.

Analyse.

On cherche un pointM0= (x0;y0)tel que pour toutl,d(M0;Dl) =koùk2Rest une constante.

L"égalitéd(M0;Dl)2=k2conduit à

(1l2)x0+2ly0(4l+2) 2=k2 (1l2)2+4l2

pour toutl2R. Nos inconnues sontx0;y0;k. On regarde l"égalité comme une égalité de deux polynômes en

la variablel.

Pour ne pas avoir à tout développer on raffine un peu : on identifie les termes de plus haut degré enl4:

x

20l4=k2l4doncx20=k2.

En évaluant l"égalité pourl=0 cela donne(x02)2=k2. On en déduit(x02)2=x20dont la seule solution

estx0=1. Ainsik=1 (cark>0). L"égalité pourl= +1 donne(2y06)2=4k2et pourl=1 donne(2y0+2)2=4k2. La seule solution est y 0=2.

Synthèse.Vérifions que le point de coordonnéesM0= (1;2)est situé à une distancek=1 de toutes les droites

D l.

Pour(x0;y0) = (1;2), on trouve :d(M0;Dl) =j(1l2)+4l(4l+2)jp(1l2)2+4l2=jl2+1jp(l2+1)2=jl2+1jjl2+1j=1. DoncM0= (1;2)

est bien équidistant de toutes les droitesDl.Correction del"exer cice4 N(D)est une droite de vecteur normal~n= (2;3). Le projeté orthogonalp(M0)deM0sur(D)est de la forme

M

0+l:~noùlest un réel à déterminer. Le pointM0+l:~na pour coordonnées(x0+2l;y03l).

M

0+l:~n2(D)()2(x0+2l)3(y03l) =5()l=2x0+3y0+513

p(M0)a pour coordonnéesx0+22x0+3y0+513 ;y032x0+3y0+513 ou encorep(M0) =9x0+6y0+1013 ;6x0+4y01513 autrement dits(M0) =M0+2l:~n(pour lelobtenu ci-dessus). Ses coordonnées sont doncs(M0) =x0+42x0+3y0+513 ;y062x0+3y0+513 ou encore5x0+12y0+2013 ;12x05y03013 .Correction del"exer cice5 N6

1.(a) Une équation d"un plan est ax+by+cz+d=0. Si un point appartient à un plan cela donne une

condition linéaire sura;b;c;d. Si l"on nous donne trois point cela donne un système linéaire de

trois équations à trois inconnues (car l"équation est unique à un facteur multplicatif non nul près).

On trouve :

i.x+y+z1=0 ii.

3 x+3y+z7=0

(b)~n=~u^~vest normal au plan. Si~n= (a;b;c)alors une équation du plan estax+by+cz+d=0. On trouve : i.9x+7y+12z17=0 ii.

17 x+13y7z3=0

(c) T rouverdeux points B;Cde la droiteD. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Procédé ensuite comme la question précédente. On obtient : i. P are xempleB= (0;6;3)etC= (1;0;2)appartiennent àD. On trouve l"équation 4x y+2z=0. ii. P are xempleB= (0;1;1)(poutt=0) etC= (1;1;2)(pourt=1) appartiennent àD. On trouve l"équation 2xy1=0. (d) T rouverun point AdeDet deux pointsB;Cde la droiteD0. Le vecteurs~u=!ABet~v=!ACsont des vecteurs directeurs deP. Puis procédé comme avant. 2. Les plans sont définis paramétriquement par (P):(2;2;1)+s(1;2;1)+t(2;1;1)donc deux des vecteurs directeurs sont~u= (1;2;1)et~v= (2;1;1). Un vecteur normal à(P)est alors~n=~u^~v= (1;1;3). Pourleplan(P0)définipar(1;3;1)+s0(3;3;2)+t0(1;1;0), ilapourvecteursdirecteurs~u0=(3;3;2) et~v0= (1;1;0). Un vecteur normal à(P0)est alors~n0=~u0^~v0= (2;2;6).

Les vecteurs normaux~net~n0sont colinéaires donc les plans(P)et(P0)sont parallèles (ou confondus).

Maintenant le pointA= (2;2;1)appartient à(P)(on a faits=0 ett=0). Il appartient aussi à(P0)(en prenants0=0 ett0=1).

Bilan.(P)et(P0)sont parallèles et ont un point commun : ils sont égaux !Correction del"exer cice6 N1.(a) Un point Aappartient à un plan d"équationax+by+cz+d=0 si et seulement siaxA+byA+

cz A+d=0. DoncA(1;1;1)2Pmsi et seulement sim2+(2m1)+m=3. Ce qui équivaut à m

2+3m4=0. Les deux solutions sontm=1 etm=4. DoncAappartient aux plansP1etP4

et pas aux autres. (b) Un plan d"équation ax+by+cz+d=0 a pour vecteur normal~n=(a;b;c). Donc si~n=(2;52 ;1) est un vecteur normal àPmune équation cartésienne est de la forme 2x52 yz+d=0. Or une équation dePmestm2x+(2m1)y+mz3=0. Ces deux équations sont égales à un facteur multiplicatif prèsl2R: 2x52 yz+d=lm2x+(2m1)y+mz3. On en déduit 2=lm2, 52
=l(2m1)et1=lm. En divisant la première égalité par la troisième on trouve :m=2.

D"oùl=12

. La seconde égalité est alors vérifiée.

Le seul plan ayant~npour vecteur normal estP2.

(c) Un v ecteurest direct eurdu plan Psi et seulement si le produit scalaire~v~n=0. Ici~n= (m2;2m

1;m). Donc~v= (1;1;1)est vecteur directeur si et seulement sim2+2m1+m=0. Ce qui

équivaut àm2+3m1=0. Les deux plans qui ont pour vecteur directeur~vsont les plans ayant le paramètrem=3p13 2 2.

Nous allons prendre 3 plans de la f amille(Pm), calculer leur point d"intersection et finalement montrer

que ce point appartient aux autres plans. 7 Prenons trois paramètre "au hasard"m=0,m=1,m=1. Un point qui appartient à ces trois plans doit vérifier les trois équations :8< :y=3 x+y+z=3 x3yz=3

Il ne reste plus qu"à vérifier que ce point appartient à tous les plansPm: c"est le cas carm20+(2m1)

(3)+m63=0.

pour toutm. En considérant que c"est une égalité polynomiale enm(x0;y0;z0sont fixés) on en déduit que

m

2x0+(2m1)y0+mz03 est le polynôme nul :x0m2+(2y0+z0)my03=0. Ces coefficients sont

nuls :x0=0 (le coefficient dem2), 2y0+z0=0 (le coefficient dem),y03=0 (le terme constant).

On trouve bien sûr le même point d"intersection de tous les plans :Q= (0;3;6).Correction del"exer cice7 N1.La distance d"un point A= (x0;y0;z0)à un planPd"équationax+by+cz+d=0 est donnée par la

formule : d(A;P) =jax0+by0+cz0+djpa

2+b2+c2:

On trouve donc

(a)d(A;P) =j21+10+12+4jp2

2+12+12=8p6

=4p6 3 (b)d(A;P) =2p42 2.

T rouvonsd"abord une équation paramétrique de la droite D. On pose par exemplez=tet on exprimex

etyen fonction det. Partant du système2x+y3z=1 x+z=1on trouvex=1tety=3+t. La droite Dest donc l"ensemble des pointMt= (1t;3+t;t)(tparcourantR).

La distanceAMtvérifie donc

AM Minimiser cette distance c"est trouver le minimum de la fonctiond(t) =3t24t+10. Il est donc atteint pourt0vérifiantd0(t0) =0, donc pourt0=23 . La distance entreAet la droiteDest donc la longueur AM t0=pd(t0) =q26 3 . Au passage on a obtenu la perpendiculaire àDpassant parAc"est la droite (AMt0).

Autre méthode.

Il existe une formule pour calculer directement la distance. Si~vest un vecteur directeur deDetM0un point deDalors d(A;D) =k~v^!AM0kk~vk: On a paramétré la droiteDpar les pointsMt= (1;3;0)+t(1;1;1). DoncM0= (1;3;0)2Det~v= (1;1;1)est un vecteur directeur deD. On a alors!AM0= (0;1;3)et~v^!AM0= (4;3;1): on obtient : d(A;D) =k~v^!AM0kk~vk=p26p3 :Correction del"exer cice8 N8

1.Notons Rle repère initial(0;~i;~j;~k). Dire qu"un pointMdu plan a pour coordonnées(x;y;z)dansR

signifie!OM=x~i+y~j+z~k.

SiR0désigne un autre repère(A;~u;~v;~w)alors le même pointMa pour coordonnées(x0;y0;z0)dansR0

signifie !AM=x0~u+y0~v+z0~w. La formule de changement c"est simplement écrire les coordonnées de l"égalité !OM=!OA+!AM. 0 @x y z1 A =0 @2 4 11 A +x0~u+y0~v+z0~w Mais on connaît les coordonnées de~u;~v;~wdansR: 0 @x y z1 A =0 @2 4 11 A +x00 @1 1 11 A +y00 @2 2 41
A +z00 @3 1 11 Aquotesdbs_dbs28.pdfusesText_34
[PDF] systeme triphasé cours pdf

[PDF] calcul de puissance en monophasé pdf

[PDF] courant triphasé explication

[PDF] courant monophasé et triphasé pdf

[PDF] test effort puissance watt

[PDF] vo2 pic définition

[PDF] test d effort mets max

[PDF] capacité fonctionnelle mets

[PDF] protocole de bruce

[PDF] reserve ventilatoire definition

[PDF] calcul met

[PDF] formule puissance moteur

[PDF] calcul puissance moteur electrique

[PDF] puissance mécanique formule

[PDF] calcul couple moteur thermique