[PDF] Lecture 15: Refraction and Reflection





Previous PDF Next PDF



THE BEHAVIOR OF LIGHT IN MINERALS AND GEMS

Defined in this way refractive index can be stated as: R.I. = velocity of light in air (=1) changes



Lecture 15: Refraction and Reflection

angles ?1 (the angle of incidence) to ?2 (the angle of refraction) we draw a However if the material has a well-defined thickness which is of the same.



Geophysik

Refracted waves correspond to energy which propagates horizontally in medium 2 with the velocity v2. This can only happen if the emergence angle i2 is 90° 



Pentacam® Pentacam® HR OCULUS

4.2.4 Cataract surgery and IOL calculation for virgin and post refractive corneas. The Pentacam® is quite useful for measuring the ACA in narrow angle ...



Pentacam® Pentacam® HR Pentacam® AXL OCULUS

4.2.4 Cataract surgery and IOL calculation for virgin and post refractive 9.3 Screening for narrow angles by Dilraj S. Grewal MD.



Refractive indices and order parameters of two liquid crystals

01-Jan-1978 ray) being refracted through a total angle of De and light polarised perpendicular to ... In the above definition 0 is the angle between the.



Note de synthèse sur lindice de réfraction de lair en fonction de la

numériquement ses faibles conséquences sur l'angle de réfraction astronomique. l'ancien air normal est par définition de l'air sec à 15 °C



EXPERIMENT 5:Determination of the refractive index (µ) of the

17-Oct-2008 With a prism the angle of refraction is not directly ... maximum definition is obtained when the angular deviation of a light ray.



Principles of variational assimilation of GNSS radio occultation data

e-mail: <name>@dkrz.de. Web: www.mpimet.mpg.de of errors is the definition of the refraction angle as the angle between ray directions at the.



III. REFLEXION REFRACTION

1 Pour la définition de l'indice de réfraction voir le chapitre II Enfin



[PDF] Chapitre 5 - Réfraction et dispersion de la lumière - Lycée dAdultes

- L'angle entre le rayon réfracté et la normale au dioptre est appelé angle de réfraction noté i2 Attention: Ne pas confondre rayon incident (ou rayon réfracté) 



[PDF] Chapitre 2 Lois de réflexion et de réfraction

20 jan 2013 · On parle de réfraction lorsqu'il y a un changement de la direction de propagation de la lumière quand celle-ci traverse un dioptre et change 



[PDF] Fiche de synthèse n°5 : réfraction et réflexion de la lumière

La réfraction limite est obtenue lorsque l'angle d'incidence vaut = 90° est l'angle de réfraction limite : c'est la valeur maximale que peut 



[PDF] III REFLEXION REFRACTION

De même on appelle plan de réfraction le plan formé par le rayon réfracté et la normale au dioptre On nomme angle d'incidence noté i1 l'angle formé par la 



Lois de la réfraction [Dioptre plan]

Définition : Loi de Kepler Si l'incidence est presque normale c'est-à-dire si les angles i et r sont suffisamment petits pour être confondus avec leurs sinus 



Angle limite réflexion totale [Dioptre plan] - Unisciel

Angle de réfraction limite Supposons que la lumière se propage d'un milieu moins réfringent vers un milieu plus réfringent (soit n 2 > n 1 )



[PDF] CHAPITRE III LA REFRACTION

fait avec la normale l'angle de réfraction iB (fig III 2 ) Nous pouvons énoncer les lois de Descartes Fig III 2 (d'après la définition de la dérivée)



[PDF] Chapitre 3 : dispersion et réfraction de la lumière - AlloSchool

I) étude de la réfraction 1) définition de la réfraction 2) indice de réfraction d'un milieu transparent 3) réfraction: les lois de Descartes :



L'angle de transmission, ou de réfraction, est l'angle formé par le rayon transmis et la normale à la surface.
  • C'est quoi l'angle de réfraction ?

    ?Angle de réfraction - ?r
    ?Angle situé entre le rayon réfracté et la normale. La loi de la réfraction nécessite deux éléments: le rayon réfracté est dans le même plan que le rayon incident et la normale.
  • Comment est défini l'angle de réfraction limite ?

    L'angle de réfraction limite est le plus grand angle de réfraction pour lequel un rayon de lumière est toujours réfracté. Cet angle limite a lieu entre deux milieux dont un a un indice de réfraction beaucoup plus grand que l'autre.
  • Quel est la formule de l'angle de réfraction ?

    La loi de Snell s'écrit simplement : ni x sin(i)= nr x sin(r) où i et r sont respectivement les angles d'incidence et de réfraction (en radian).
  • Lorsque la lumière change de milieu de propagation, elle peut subir plusieurs phénomènes : Un « retour » dans le milieu initial, c'est la réflexion. Un changement de direction dans le nouveau milieu, c'est la réfraction.
Lecture 15: Refraction and Reflection

Matthew SchwartzLecture 15:

Refraction and Reflection

1 Refraction

When we discussed polarization, we saw that when light enters a medium with a different index of refraction, the frequency stays the same but the wavelength changes. Using that the speed of light isv=c n we deduced thatλ1n1=λ2n2, so that as the index of refraction goes up, the wave- length goes down. The picture looks like this Figure 1.Plane wave entering and emerging from a medium with differentindex of refraction. Now let us ask what happens when light enters a medium with a different index of refraction at an angle. Since we know the wavelength of light in the two media, we can deduce the effect with pictures. The key is to draw the plane waves as the location of the maximum field values. These crests will be straight lines, but spaced more closelytogether in the medium with higher index of refraction. For example, if sunlight hits ice (or water), the picture looks like this Figure 2.Matching wavefronts demonstrates refraction. Orange lines represent the crests of waves (or the maximum amplitude 1 The bending of light when the index of refraction changes is calledrefraction. To relate the anglesθ1(theangle of incidence) toθ2(theangle of refraction) we draw a triangle

Figure 3.Light comes in from the air on the left with the left dashed blue line indicating one wavecrest

with the previous wavecrest having just finished passing into the water. Thus the wavelengthλ1in

medium 1 is the solid thick orange line on the bottom left, andthe wavelength in the second mediumλ2

is the thick solid orange line on the top right. Call the distance between the places where the wave crest hits the water along the waterR (the thick green vertical line in the picture). The distancebetween crests isλ

1=Rsinθ1in the

air andλ

2=Rsinθ2in the water. SinceRis the same, trigonometry andn1λ1=n2λ2imply

n1 n2=λ2

λ1=sinθ2

sinθ1(1)

This is known asSnell"s law.

The same logic holds for reflected waves:Ris the same andλis the same (sincen

1=n2for a

reflection) thereforeθ

1=θ2. This is usual thelaw of reflection: the angle of reflection is equal

to the angle of incidence. For a fast-to-slow interface (like air to water), the angle gets smaller (the refracted angle is less than the incident angle). For a slow-to-fast interface(like water to air), the angle gets larger. Since the angle cannot be larger than 90 ◦while remaining in the second medium, there is a largest incident angle for refraction whenn

2 fies sinθ 2=n1 n2sinθ1, we see that ifn1 n2sinθ1>1there is no solution. Thecritical anglebeyond which no refraction occurs is therefore

θc=sin-1n2

n1(2)

For airn≈1and for watern=1.33 soθ

c=49◦. For incident angles larger than the critical angle, there is no refraction: all the light is reflected. We call this situationtotal internal reflection. Total internal reflection can only happen ifn

2 material with higher index of refraction but not a lower one. Total internal reflection is the principle behind fiber optics. A fiber optical cable has a solid silica core surrounding by a cladding with an index of refraction about 1% smaller. For example, the core might haven

1≈1.4475 and the claddingn2=1.444, so the critical angle isθc=86◦from

normal incidence, or4 ◦from the direction of propagation. As long as the cable is notbent too much (typically the cable is thick enough so that this is verydifficult), the light will just bounce around in the cable, never exiting, with little loss. Why might you want to send signals with vis- ible light rather than radio waves?

2Section 1

In the fiber optic cable, the high index of refraction is surrounded by a lower index of refrac- tion, or equivalently the lower wave speed medium is surrounded by higher wave speed medium. You can always remember this through Muller"s analogy with the people holding hands and walking at different speeds - if slow people are surrounded byfast people, the fast will bend in to the slow. The same principle explains the SOFAR sound channel in the ocean and the sound channel in the atmosphere. Recall that for a gas, the speed ofsound iscs=γRT m , thus as the temperature goes down, the speed of sound goes down. Howeverwhen you go high enough to hit the ozone layer, the temperature starts increasing. This isbecause ozone absorbs UV light, con- verting it to heat. Thus speed of sound has a minimum, and there is a sound channel.

2 Boundary conditions

Snell"s law holds for any polarization. It determines the direction of the transmitted fields. It does not determine the magnitude. In fact, the magnitude depends on the polarization (as we already know, since reflections are generally polarized). To determine the magnitude(s), we need the boundary conditions at the interface. You might thinkE?1=E?2andB?1=B?2are the right boundary conditions. However, if charge accumulates on the boundary, as in a conductor, the fields outside and inside the material will have to be different. If current accumulates, for example through a growing number of little swirling eddies of charge, the magnetic field will be different. How much charge or current accumulates is determined by the electric permittivity?and magnetic permeabilityμof a material. Recall that in a vacuum, these reduce to?0andμ0and that the speed of light in the vacuum isc=?0μ0⎷ . In a medium, we have to replace all the?0 andμ0factors in Maxwell"s equations with?andμ. So,v=μ?⎷ in a material and??B???=1v??E???. Moreover, since one of Maxwell"s equations is??×B? ∂t??E??, it is natural to work with the rescaled fieldsD?=?E?andH?=1 B?. Figure 4.Charge accumulating on a boundary can affectE?notE?. To figure out the effect of the charge, we can use Gauss"s law. Drawing a little pillbox around the charges as in Fig

4, we see the only the field perpendicular to the interface can be

affected. Let"s call thisE ?. You should remember from 15b that the way electric permittivity works is that it lets you use Gauss"s law as if there is no charge, provided you integrateD?=?E? over the surface rather thanE?. Therefore the boundary condition isD ?(1)=D?(2)which implies

1E?(1)=?2E?(2)(3)

where?

1is the dielectric constant in the medium where the transvereelectric field isE?(1)and

21is the dielectric constant in the medium where the transvereelectric field isE?(2).

Since the parallel electric field is unaffected by the charges, we also have E ||(1)=E||(2)(4) There are no factors of?here because the accumulated charge has no effect onE

Boundary conditions3

For the magnetic field, the boundary conditions can be affected due to the magnetic moment of the particles in the medium, as encoded inμ. This picture looks like Figure 5.Current on the boundary can affectB?notB?. Since a current induces a field perpendicular to the current,onlyBquotesdbs_dbs2.pdfusesText_3

[PDF] calculer langle dincidence limite

[PDF] touche sin-1 calculatrice

[PDF] comment calculer langle limite de refraction

[PDF] fonction linéaire antécédent

[PDF] calculer la hauteur d'un parallélépipède rectangle

[PDF] exercice patron d'une pyramide

[PDF] abc est un triangle rectangle en a et h est le pied de la hauteur issue de a calculer sin abc

[PDF] élasticité microéconomie

[PDF] coefficient d'élasticité mercatique

[PDF] elasticité de la demande par rapport au prix def

[PDF] élasticité de la demande par rapport au prix définition

[PDF] élasticité prix dérivée

[PDF] calcul de l'énergie thermique

[PDF] quantification de l'énergie d'un atome

[PDF] la chaine d'énergie d'un sèche cheveux