[PDF] Cours de Mécanique des fluides





Previous PDF Next PDF



MECANIQUE DES FLUIDES I (Cours et Applications) Dr YOUCEFI

Equations générales de la dynamique des fluides parfaits. 3.2. Ecoulement permanent. 3.3. Equation de continuité. 3.4. Débit massique débit volumique.



Cours de Mécanique des fluides

Rappelons que pour un fluide incompressible la masse volumique est constante. Cela concerne donc les liquides ainsi que les écoulements gazeux dont la vitesse 



MECANIQUE DES FLUIDES. Cours et exercices corrigés

dynamique des fluides incompressibles parfaits en particulier



FORMULAIRE DE MECANIQUE DES FLUIDES

p atm – p asp = ? g h asp ? : masse volumique du liquide en kg /m3 p asp = p atm - ? g h asp eau : h asp maxi th = 10.33m h : HG ( hauteur géométrique ) en m p 



Mécanique des fluides et transferts

Il présente les bases de la mécanique des fluides et des transferts. Bonne lecture. Olivier Bonnefoy. Nota Bene : ce document est en cours d'élaboration.



Support de cours Mécanique des fluides L2 S1 Département Génie

- Le volume ne change pas ? ? = cte : cas des liquides (eau huile) ? fluide incompressible. - Le volume change ? ? varie : cas des gaz (air) ? fluide 



Cours de mécanique des fluides

La fameuse formule de Bernoulli y est présentée ainsi que Mécanique des Fluides de Toulouse)



MECANIQUE DES FLUIDES

- "Mécanique Des Fluides Incompressibles" J.-S. Darrozes



MÉCANIQUE DES FLUIDES

P pression en Pa. F force en N. S surface en m2 r masse volumique du fluide g accél t de la pesanteur (981 m.s-2) h hauteur de la colonne du fluide.

CoursdeMécaniquedesfluides

J.ROUSSEL

www.almohandiss.com 2 c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

Tabledesmatières

1Cinématiquedesfluides5

2DynamiquedesfluidesNewtoniens15

3Fluidesenéquilibre25

5Écoulementsvisqueux43

3www.almohandiss.com

www.almohandiss.com

4Tabledesmatières

6Phénomènesdetensiondesurface49

AFormulairemathématique57

DDiagrammedeMoody69

c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

Chapitre1

Cinématiquedes¯uides

sablesdecetécoulement.

1.1L'état¯uide

1.1.1Propriétésd'un¯uide

Approximation:constante

T=1 V@V@P T=1 @@P T0Pa1 =1 V@V@T P=1 @@T P0K1 passeparunetransitiondephase).

5www.almohandiss.com

www.almohandiss.com

6Chapitre1.Cinématiquedesfluides

uncoefficientdedilatationtrèsfaible(1 parfait,ona:

Approximationdugazparfait:T=1P

c'estlecasdescristauxliquidesparexemple. desliquides.

1.1.2Lemodèlecontinu

parled'échellemésoscopique.

LamassevolumiquelocaleenM:(M;t)=m

dans,àl'instantt. dansàl'instantt. c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

1.2.Descriptiond'unfluide7

l l

Échelle microscopique

Monde fluctuant et aléatoireN molécules

Échelle mésoscopique

lissage des fluctuations par un effet de moyenne locale L >> v(M,t)M (M,t) mparticule de fluide

Fluidea >>

FIG.1.1-Modèlecontinudufluide.

cules,ions,...).

Remarques:

uidemaislamoyennede K n= L1 conceptsdephysiquestatistique.

1.2Descriptiond'un¯uide

1.2.1DescriptiondeLagrange

www.almohandiss.com

8Chapitre1.Cinématiquedesfluides

xu zuyu x0y0z0 O xyz

Trajectoire

M(x,y,z) à l'instant tM( , , )

0 instant t (a)Visualisationdelatrajectoiresdespar- ticulesautourd'unobstacle 8 :x=x(x0;y0;z0;t) y=y(x0;y0;z0;t) z=z(x0;y0;z0;t)

Lavitessedelaparticules'écrit:

!v(P)=0 B @v x v y v z1 C A=0 B @@x @t@y @t @z @t1 C A avecunlongtempspose(cf.figure1.2).

1.2.2Descriptiond'Euler

c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

1.2.Descriptiond'unfluide9

équationsdifférentiellessuivantes:

dx vx=dyvy=dzvz

Descriptiond'Euler=>Lignedecourant

y xM (x , y , z , t) 111

M (x , y , z , t)

222

Lignes d'écoulement

à l'instant t

(a)Ligned'écoulement(effetMagnus). (b)Visualisationdeslignesdecourantau- tourd'undisque

FIG.1.3-Notiondelignedecourant.

1.2.3Régimesd'écoulement

@t=!0.Attention www.almohandiss.com

10Chapitre1.Cinématiquedesfluides

courantsn'évoluentpasaucoursdutemps. complexeetchaotique. defluideP:8 :x=x(x0;y0;z0;t) y=y(x0;y0;z0;t) z=z(x0;y0;z0;t) !a(P)=0 B @a x a y a z1 C A=0 B 2x @t2 2y @t2 2z @t21 C A champdesvitesses. s'écrit t=d!vdt ensuivantlaparticule=D!v Dt

Où,

D!v a x=@vx c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

1.3.Conservationdelamasse11

defaçoncompacteona

àsavariationtemporellepar:

DG

Dt=@G@t+(!v:!r)G

1.3Conservationdelamasse

1.3.1Vecteurdensitédematière

dt.Onadonc dm=dtdS!v:!n a vdt vn v dS a volume : dS.v.dt.cos( )

FIG.1.4-Calculdudébit.

www.almohandiss.com

12Chapitre1.Cinématiquedesfluides

(unité:kg:s1): Q m=ZZ (S)dm dt=ZZ (S)!v:!ndS

Pourunesurfacefermée:

Q sortie m=I (S)!v:dS!n oùQsortie tique). unitédetemps(unité:m3:s1): Q V=ZZ1 dmdt=ZZ (S)!vdS!n !j=!v

Remarques:

1.3.2Équationdecontinuité.

tiondecontinuité».

M(t)=ZZZ

(V)(x;y;z;t)dxdydz dM(t) dt=ZZZ (V)@@tdxdydz=ZZ (S)!vdS!n c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

1.3.Conservationdelamasse13

Lignes de courant

v (S) n dS

FIG.1.5-Conservationdelamasse.

ZZZ (V)(div(!v)+@ @t)dxdydz=08V d'oùl'équationdecontinuité:

Équationdecontinuité:div(!v)+@@t=0

1.3.3Casdes¯uidesincompressibles

cegaz. div !v=0)I (S)!vdS!n=0 lavitesseestàfluxconservatif.

Conséquences:

Q ventrant=Qvsortant www.almohandiss.com

14Chapitre1.Cinématiquedesfluides

Débit massique entrant = débit massique sortant2 uu1 (S )Tube de courant 1 (S ) 2 v=1

SZZ!v:!udS

Onobtient

v1S1=v2S2 delavitessemoyenne. c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

Chapitre2

Dynamiquedes¯uidesNewtoniens

2.1Bilandesforces

Ondistinguedeuxtypesdeforces:

forcesdesurface.

2.1.1Forcesdepression

dSdésignelacontrainte.

Onadmettraque:

d !Fn=P(M):dS:!n où

15www.almohandiss.com

www.almohandiss.com dF dF dF aire dS 1 22
3 aire dS

3aire dS1

pressionprendlamêmevaleur. valeur.

Pascal(pa).

1Pa=1N:m2

UnitéÉquivalenceenpascal

Bar1bar=105Pa

atmosphère(atm)1atm=1;013105Pa torr(mmHg)1torr=1mmHg=133;3Pa

TAB.2.1-Unitésdepression.

voisinesdelasurface.

ApproximationdesGazParfaits:PnRTV

c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

2.1.Bilandesforces17

1300atm!

yz x

P(x,y+dy/2,z)P(x,y-dy/2,z)P(x,y,z+dz/2)

P(x,y,z-dz/2)M(x,y,z)

Parallèlépipède de volume dxdydz

quedelacoordonnéey. cettecomposante: F y=dxdz[P(x;ydy

2;z)P(x;y+dy2;z)]

F y=dxdz[P(x;y;z)dy !F=Fx!ux+Fy!uy+Fz!uz=!rPd miquedepression

Forcevolumiquedepression:!fp=!rP

www.almohandiss.com

V!fpd.

2.1.3Notiondeviscosité

wFil de torsion

Fluide visqueux

a

FIG.2.3-ExpériencedeCouette.

Ontrouve

/v e c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

2.1.Bilandesforces19

surunélémentdesurfacedSs'écrit: y xvitesses profil des

écoulement laminaire

dv dyt = hyxt = -yyP contrainte normalecontrainte tangentielle

Fluide(20C,1atm)Viscosité(Pa.s.)

Eau(liq)1;006103

Huilemoteur(liq)0;3

Glycérinepure(liq)0,8

Mercure(liq)1;56:103

vapeurd'eau(gaz)9;7:106

Airsec(gaz)18;2:106

TAB.2.2-Quelquesvaleursdeviscosités.

/p www.almohandiss.com cisaillement. généraliseronslerésultat. y xvitesses profil des

M(x,y,z)

(y+dy)t t(y) !dF=@v @y(y+dy)@v@y(y) dxdz!ux=@2v@y2d!ux cetteformulesegénéralise: !4A=4Ax!ux+4Ay!uy+4Az!uz pluscomplexe. c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

2.2.L'équationdeNavier-Stokes.21

2.1.5Forcesextérieures

!dF=!fextd ^!v)

2.2L'équationdeNavier-Stokes.

2.2.1L'équationdeNavier-Stokes.

Dynamique:

dm D!v

Dt=!rPd+!fextd+!4vd

D!v

Dt=!rP+!fext+!4v

Distinguonsdeuxcas:

lefluideestincompressible(constante): www.almohandiss.com continuitédiv(!v)+@ grosordinateurs...

2.2.3Approximations

(!v!r)!v !v v2 d v=vd=Re typesd'écoulements: (@!v @t+(!v:!r)!v)=!rP+!fext c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

2.3.Conditionsauxlimites23

visqueux.L'équationdevient @!v @t=!rP+!fext+!4v

2.3Conditionsauxlimites

2.3.1Écoulementparfait

d'uneinterface.

2.3.2Écoulementvisqueux

uneinterfaceliquidesolide) www.almohandiss.com c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

Chapitre3

Fluidesenéquilibre

3.1Fluideaureposdansunchampdepesanteur

cefluidedansceréférentiel.

3.1.1Miseenéquation

!fext=!g

L'équationdeNavier-Stokesdevient:

!rP+!g=!0

3.1.2Casdesliquides

25www.almohandiss.com

www.almohandiss.com

26Chapitre3.Fluidesenéquilibre

g forces volumiques de pressionisobares

Surface librez

conséquences: p1=p2 -Voirl'expériencedutonneaudePascal.

Applications:

lebaromètredeToricelli

3.1.3Casdesgaz

miquepourrésoudreleproblème. c

JimmyRousselwww.almohandiss.com

www.almohandiss.com (a)Expé- riencedu tonneaude

Pascal

(b)Principedelapressehydraulique www.almohandiss.com

28Chapitre3.Fluidesenéquilibre

Legazestparfaitdonc:

=MP RT dP dz=MPRT0g

P(z)=P0exp[z

H] oùH=RT

3.1.4Pousséed'Archimède

g z

Surface libre

Cube d'arete a1

P 2 P

FIG.3.3-Pousséed'Archimède.

Onobtient

=P2SP1S=gaS c

JimmyRousselwww.almohandiss.com

www.almohandiss.com

3.2.Casgénéral29

estégaleaupoidsdufluidedéplacé. engénéral,ducentredegravité.

Applications:

flottaisondesbateaux ascensiondesballonssondes, convectiondelachaleuretc...

3.2Casgénéral

l'équationdel'hydrostatique:

Équationdel'hydrostatique:!fext!rP=!0

3.2.2Exemple:leliquideenrotation.

cylindre,leliquideestaurepos.

Laforcevolumiquedepesanteurvaut!p=!g

www.almohandiss.com

30Chapitre3.Fluidesenéquilibre

heruz u g hquotesdbs_dbs19.pdfusesText_25
[PDF] formulaire mutuelle cnops

[PDF] formulaire nis algerie

[PDF] formulaire p11 des nations unies en français pdf

[PDF] formulaire p11 unicef word en français

[PDF] formulaire passeport algerien pdf 2016

[PDF] formulaire passeport algerien pdf 2017

[PDF] formulaire passeport algerien word

[PDF] formulaire passeport biometrique

[PDF] formulaire passeport biometrique algérien pour mineur

[PDF] formulaire passeport biométrique dz

[PDF] formulaire pdf demande de visa italie

[PDF] formulaire pdf imaginary

[PDF] formulaire pdf ramed

[PDF] formulaire physique chimie bac s

[PDF] formulaire physique chimie terminale s