[PDF] Physique terminale S 12 avr. 2019 4.5





Previous PDF Next PDF



1. Mouvement dun projectile dans le champ de pesanteur uniforme

On dit dans ce cas que le projectile est en chute libre. Les caractéristiques du poids sont :. P=m. g force verticale et dirigée vers 



Chapitre 12 - Mouvement dans un champ uniforme

12.1 Mouvement dans un champ de pesanteur uniforme . Bilan des forces extérieures : Poids ... Poisson Florian. Spécialité Physique-Chimie Terminale ...



Electromagnétisme A Particule chargée dans un champ électrique

Application: guidage des particules en mouvement I - Force de Lorentz subie par une charge dans un champ électrique et dans un champ magnétique.



Terminale générale - Mouvement dans un champ uniforme - Fiche

La force et le champ de pesanteur. La force gravitationnelle exercée par la Physique – Chimie Spécialité Terminale générale - Année scolaire 2020/2021.



Chapitre 12 Mouvements et énergies dans un champ uniforme

D'après l'inventaire des forces extérieures la seule force exercée sur le En physique



Terminale générale - Mouvement dans un champ uniforme - Exercices

pour que la chandelle soit réussie. 1/13. Mouvement dans un champ uniforme - Exercices. Physique – Chimie terminale S obligatoire - Année scolaire 2019/2020.



Problèmes de physique de concours corrigés – 1ère année de

où g0 désigne le champ de pesanteur terrestre au niveau du sol. Le mouvement de la particule alpha soumise à une force centrale



ANNALES SCIENCES PHYSIQUES Terminale D

Chapitre 2 : Les lois du mouvement de Newton. Chapitre 3: Le travail et l'énergie cinétique. Chapitre 4 : Le mouvement dans un champ de gravitation.



Physique terminale S

12 avr. 2019 4.5 La force gravitationnelle (de Newton force de champ) . . . . . . . . 9 ... Ce référentiel est adapté à l'étude des mouvements de faible.



Cinématique et dynamique du point matériel (Cours et exercices

temps (la cinématique) et étudier les forces qui provoquent ou modifient leur mouvement (la dynamique). Ce manuscrit est subdivisé comme suit :.

DERNIÈRE IMPRESSION LE12 avril 2019 à 18:16

Chapitre 5

Les lois de la mécanique et ses outils

Table des matières

1 Les référentiels et repères2

2 Les grandeurs de l"évolution2

2.1 Le vecteur de position. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Le vecteur vitesse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Le vecteur accélération. . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Quelques mouvements classiques5

3.1 Le mouvement rectiligne uniforme. . . . . . . . . . . . . . . . . . . 5

3.2 Le mouvement uniformement varié. . . . . . . . . . . . . . . . . . 6

3.3 Le mouvement circulaire uniforme. . . . . . . . . . . . . . . . . . . 6

3.4 Le mouvement circulaire non uniforme. . . . . . . . . . . . . . . . 7

4 Les forces usuelles8

4.1 Le poids (force de champ). . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 La réaction (force de contact). . . . . . . . . . . . . . . . . . . . . . 8

4.3 Tension d"un fil (force de contact). . . . . . . . . . . . . . . . . . . . 8

4.4 La poussée d"Archimède. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.5 La force gravitationnelle (de Newton, force de champ). . . . . . . . 9

4.6 La force électrostatique (de Coulomb, force de champ). . . . . . . . 9

5 Les lois de Newton10

5.1 Première loi ou principe d"inertie. . . . . . . . . . . . . . . . . . . . 10

5.2 Deuxième loi ou principe fondamental de la dynamique. . . . . . 10

5.3 Troisième loi ou principe de l"action et de la réaction. . . . . . . . . 11

5.4 Application des lois de Newton. . . . . . . . . . . . . . . . . . . . . 11

PAUL MILAN1 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

1 Les référentiels et repères

Définition 1 :On appelleréférentielun objet par rapport auquel on étudie un mouvement. On distingue trois types de référentiel : •Leréférentiel terrestre: le solide de référence est un objet fixe à la surface de la Terre. Les trois axes sont, par exemple, la verticale, les axes est-ouest et nord-sud. Ce référentiel est adapté à l"étude des mouvements de faible amplitude et de courte durée à la surface de la Terre tels que les mouve- ments étudiés dans un laboratoire. •Leréférentiel géocentrique: le solide de référence est le centre de la Terre. Les trois axes sont dirigés vers trois étoiles fixes. Un tel référentiel subit le mouvement de révolution de la Terre autour du Soleil mais pas le mou- vement de rotation de la Terre autour de l"axe des pôles. Il est adapté à l"étude du mouvement des satellites en orbite autour de la Terre. •Leréférentiel héliocentrique: le solide de référence est le centre du So- leil. Les trois axes sont les mêmes que ceux du référentiel géocentrique, dirigées vers trois étoiles fixes. Il est adapté à l"étude des astresen orbite autour du Soleil. Définition 2 :Pour les mouvements dans l"espace, on associe au référentiel un repère cartésien(O,?ı,??,?k)défini par une origine et trois vecteurs unitaires deux à deux perpendiculaires. On réduit ce repère à (O,?ı,??)pour un mouvement plan et par (O,?ı)pour un mouvement rectiligne.

2 Les grandeurs de l"évolution

2.1 Le vecteur de position

Définition 3 :Tout objet ponctuel M dans l"espace, est repéré par trois coor- donnéesx,y,z, fonction du tempst, dans le repère(O,?ı,??,?k)associé au référen- tiel. On définit alors levecteur position--→OM et la distance OM par :

OM=x(t)?ı+y(t)??+z(t)?kOM=?

x2(t) +y2(t) +z2(t) Les fonctionsx(t),y(t)etz(t)sont appeléeséquations horairesdu mouvement du point M. La courbe décrite par M en fonction du temps est appeléetrajectoiredu point M Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =t+1,y(t) =3t-2 etz(t) =2. a) Décrire la trajectoire du point M b) Déterminer la distance OM à la datet=3 s

PAUL MILAN2 PHYSIQUE-CHIMIE. TERMINALES

2. LES GRANDEURS DE L"ÉVOLUTION

a) Pour déterminer la trajectoire du point M, il faut éliminer le temps en déter- minant une relation entrex,yetz. Par exemple, on exprimeten fonction de x:t=x-1 que l"on remplace dans l"expression dey. On obtient alors : ?y=3(x-1)-2 z=2??y=3x-5 z=2 La trajectoire du point M est donc une droite d"équationy=3x-5 dans le plan d"altitude 2 b) Pour déterminer la distance OM, il faut calculer la norme du vecteur--→OM à la datet=3 s. On trouve alors M(4;7;2), d"où : OM=?

42+72+22=⎷69?8,31 m

2.2 Le vecteur vitesse

Définition 4 :On définit le vecteur vitesse?vcomme la dérivée du vecteur de position en fonction du temps. v=d--→OM dtsoit?v=dxdt?ı+dydt??+dzdt?k Le vecteur vitesse est toujours tangent à la trajectoire Remarque :On utilise de préférence la notation différentielle pour la dérivée, plutôt que la notation mathématiquex?(t),y?(t)etz?(t), rappelant ainsi que la vi- tesse est obtenue comme le rapport d"une variation de position sur unevariation du temps. vm: vm=---→OM2----→OM1 Si l"on veut connaître l"intensité de la vitesse, il suffit de prendre la norme du vecteur vitesse : v=||?v||=? ?dx dt? 2 +?dydt? 2 +?dzdt? 2 Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =2t2-3t+1,y(t) =3t-2 etz(t) =2. a) Calculer les coordonnées du vecteur vitesse au cours du temps b) Déterminer la vitesse du point M à l"instantt=5 s

PAUL MILAN3 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

a) On dérive les coordonnées du point M en fonction du temps, on obtient alors : v= (4t-3 ; 3 ; 0) b) Pour déterminer la vitesse du point M à l"intantt=5 s, il faut calculer la norme du vecteur vitesse à l"instantt=5 s v(5) =?

172+32+02=⎷298?17,26 m.s-1

2.3 Le vecteur accélération

Définition 5 :D"une façon analogue au vecteur vitesse?v, on définit le vecteur accélération ?acomme la dérivée du vecteur vitesse en fonction du temps a=d?v dtsoit?a=dvxdt?ı+dvydt??+dvzdt?k Si on revient au vecteur position, le vecteur accélération est doncla dérivée se- conde du vecteur--→OM en fonction du temps. En utilisant la notation différen- tielle, on obtient : a=d2--→OM dt2soit?a=d2xdt2?ı+d2ydt2??+d2zdt2?k Remarque :La notationd2xdt2qui se lit " dé deuxxsur détdeux » correspond à la dérivée seconde dexen fonction du temps qui s"écrit en mathématiquex??(t) Exemple :Un point M a pour équations horaires dans le référentiel terrestre : x(t) =2t2-3t+1,y(t) =3t-2 etz(t) =2. Déterminer la l"accélération du point M à l"instantt=2 s Il faut dériver deux fois les coordonnées du point M, pour obtenirle vecteur ac- célération a= (4 ; 0 ; 0)soita=4 m.s-2

2.4 Application

Les coordonnées d"un mobile dans le plan

(O,?ı,??), associé au référentiel ter- restre, sont données par :?x(t) =4t-2 y(t) =t2-2t+1 a) Déterminer la position du mobile aux instantst=0 ett=2 s b) Déterminer l"accélération du mobile à l"instantt=10 s c) Établir l"équation cartésienne de la trajectoire du mobile M et en donner une représentation en indiquant le sens de parcours du point M

PAUL MILAN4 PHYSIQUE-CHIMIE. TERMINALES

3. QUELQUES MOUVEMENTS CLASSIQUES

a) On détermine les coordonnées du point M aux instantt=0 ett=2 s --→OM(0) = (-2 ; 1)et--→OM(2) = (6 ; 1) b) Pour déterminer l"accélération à l"instantt=10 s, il faut dériver deux fois le vecteur position : v= (4 ; 2t-2)et?a= (0 ; 2) L"accélération est donc constante donca(10) =2 m.s-2 c) Pour déterminer l"équation carté- sienne de la trajectoire, il faut éliminer tdes équations horaires. De l"expres- sion dex(t), on a :t=x+2

4que l"on

remplace dans l"expression dey(t)en remarquant que : t

2-2t+1= (t-1)2

y=?x+2 4-1? 2 =?x+2-44? 2 (x-2)2

16=116x2-14x+14

1 2 3 4 5 6 7 8 9-1-20

-11 23
?M(0)? M(2) ?v(0)? v(2) ?a(0)?a(2) trajectoire La trajectoire est donc une parabole de sommet S(2;0). Pour connaître le sens du parcours il suffit de repérer les points M(0) et M(2).

3 Quelques mouvements classiques

3.1 Le mouvement rectiligne uniforme

Définition 6 :On appelle mouvement rectiligne uniforme un mouvement dans lequel le mobile se déplace sur une droite à vitesse constante. Si le mobile M(x(t);0;0)se déplace sur l"axe Ox, on a alors le schéma suivant : Ox ?x 0M(0) ?M(t) x(t)?v?v Le vecteur vitesse est alors constant :?v=Cte car sa norme et son sens sont constants (trajectoire rectiligne). Le vecteur accélération ?aest donc nul?a=?0. Si à t=0 le mobile se trouve à l"abscissex0et en appelantvl"intensité de la vitesse, on obtient l"équation horaire suivante : x(t) =vt+x0

PAUL MILAN5 PHYSIQUE-CHIMIE. TERMINALES

TABLE DES MATIÈRES

3.2 Le mouvement uniformement varié

Définition 7 :On appelle mouvement rectiligne uniformément varié un mou- vement dans lequel le mobile se déplace sur une droite avec une accélération contante.

Deux cas peuvent se présenter :

•L"accélération et la vitesse ont le même sens :?v·?a>0. Le mouvement est alors uniformément accéléré •L"accélération et la vitesse ont des sens contraires :?v·?a<0. Le mouve- ment est alors uniformément retardé Si le mobile M(x(t);0;0)se déplace sur l"axe Ox, on a alors le schéma suivant : Ox ?x 0M(0) ?M(t) x(t)?a?v0?a?v(t) Le vecteur accélération est alors constant :?a=Cte car sa norme et son sens sont constants (trajectoire rectiligne). Pour trouver l"équation horaire, il faut intégrer deux fois le vecteur accélération a x(t) =a?vx(t) =at+v0?x(t) =1

2at2+v0t+x0

Remarque :v0etx0sont les constante d"intégration. Exemple :Soit un mobile M subissant une accélération contante sur l"axe Ox tel quea=4 m.s-2. On suppose qu"àt=0 s, le point M est immobile en O. Déterminer la distance parcourue par M à l"instantt=5 s. Comme le mobile M est immobile en O àt=0 s, alors les constantes d"intégration sont nulles :v0=0 m.s-1etx0=0 m. On a alors l"équation horaire suivante : x(t) =1

2at2=2t2

Le mobile aura parcouru la distancex(5)à l"instantt=5 s, soit : x(5) =2×25=50 m

3.3 Le mouvement circulaire uniforme

Définition 8 :On appelle mouvement circulaire uniforme un mouvement circulaire dont le module de la vitesse est constante. Remarque :Le vecteur vitesse ici n"est pas nul car la direction de ce vecteur varie dans le temps. On a donc : v=Cte et?v?=Cte Si le point M se déplace dans le plan Oxysur un cercle de centre O et de rayon R, on a alors la figure suivante :

PAUL MILAN6 PHYSIQUE-CHIMIE. TERMINALES

3. QUELQUES MOUVEMENTS CLASSIQUES

Si le module du vecteur vitesse est

constant, on peut montrer que : •l"accélération est dirigée vers O :l"accélération est centripède •on a la relation entre l"accéléra-tion et le vitesse suivante : a=v2 R O? M(t)

M(0)θ=ωt

?v ?a xy Démonstration :Montrons que dans un mouvement circulaire uniforme, l"ac- célération est centripède (dirigée vers le centre du cercle). Supposons qu"àt=0 s le point M soit sur l"axe Ox. À un instantt?=0, le point M est repéré par l"angleθsur le cercle. Comme le mouvement est uniforme, la vitesse angulaireωest constante. On a donc :

θ=ωt. Les équations horaires sont donc :

OM?????x(t) =Rcosθ=Rcosωt

y(t) =Rsinθ=Rsinωt En dérivant une fois, on obtient les coordonnées du vecteur vitesse, puis une seconde fois le vecteur accélération : v?????v x(t) =-Rωsinωt v y(t) =Rωcosωtet?a?????a x(t) =-Rω2cosωt a y(t) =-Rω2sinωt

On remarque que :

?a=-ω2--→OM . L"accélération est dirigé vers le centre du cercle. L"accélération est donc centripède. Calculons les normes des vecteurs vitesse et accélération :quotesdbs_dbs6.pdfusesText_12
[PDF] Champ de gravitation 1ère Physique

[PDF] Champ de Mars a Rome 6ème Histoire

[PDF] Champ de pesanteur 2nde Chimie

[PDF] champ de pesanteur et champ de gravitation PDF Cours,Exercices ,Examens

[PDF] champ du programme definition PDF Cours,Exercices ,Examens

[PDF] champ électrique cours PDF Cours,Exercices ,Examens

[PDF] champ électrique crée par deux charges ponctuelles PDF Cours,Exercices ,Examens

[PDF] champ électrique créé par une charge ponctuelle PDF Cours,Exercices ,Examens

[PDF] champ électrique entre deux plaques parallèles chargée PDF Cours,Exercices ,Examens

[PDF] champ électrique formule PDF Cours,Exercices ,Examens

[PDF] champ électrique sens PDF Cours,Exercices ,Examens

[PDF] champ électrique uniforme PDF Cours,Exercices ,Examens

[PDF] champ electromagnetique PDF Cours,Exercices ,Examens

[PDF] champ electrostatique cours 1ere s PDF Cours,Exercices ,Examens

[PDF] champ electrostatique cours 1ere s pdf PDF Cours,Exercices ,Examens