[PDF] épreuve de spécialité - session 2021





Previous PDF Next PDF



EXERCICES SUR LES DERIVEES Bac Pro tert

4) En déduire la valeur de x pour laquelle la fonction f admet un maximum. (D'après Bac Pro Restauration et alimentation Session juin 2003). Exercice 3.



Exercice corrigé Chapitre 6 : fonctions dérivées

Exercice corrigé. Chapitre 6 : fonctions dérivées. Lors d'une compétition d'athlétisme - dessiner le tableau de variation de H à l'aide de la fonction dérivée ...



Exercices sur la fonction dérivée.

Exercices sur la fonction dérivée. Exercice N°1 : Calculer la dérivée f'(x) des fonctions f(x). Les expressions fractionnaires seront écrites de la façon 



EXERCICES SUR LES DERIVEES Bac Pro

c) Établir le tableau de variation de la fonction f. 4) a) De la question précédente déduire le valeur de R pour laquelle l'aire A est minimale. b) Calculer la 



Fonction dérivée dune fonction Corrigé exercices

Recherche du maximum de la fonction g définie sur [- 3 ; 5] par g(x) = - 05 x² + x + 5 g'(x) = - x + 1. La dérivée s'annule pour x = 1.



MATHEMATIQUES A LUSAGE DE LETUDIANT DE BAC PRO EN

On obtient f′(x) = −3 x2 + 8x + 9. (x2 + 3)2 . Exercice 1. Calculer les dérivées des fonctions suivantes : 1) f(x)=4x2 − 3x + 1. 2) 



03 - Exercices

Exercice 4 d'après sujet de bac pro 2008. L'étude de la fréquentation du On note ' la fonction dérivée de la fonction f. Calculer ' . a. Déterminer par ...



EXERCICESSURLESFONCTIONSDÉRIVÉES

(D'après sujet de Bac Pro Aéronautique Session 2002). Page 4. http://maths-sciences.fr. Bac Pro tert. Exercices sur les fonctions dérivées. 4/9. Exercice 4. Le 



FONCTION LOGARITHME NEPERIEN EXERCICES CORRIGES

Exercice n°14. Déterminer les ensembles de définition et de dérivabilité puis calculer les dérivées des fonctions ci-dessous. 1) ( ). 1 2ln. 2 x. f x x. =− + +.



Voici le sujet du CCF n°1 donné à sa classe de Bac Pro par une de

EXERCICE III (12 points). On donne la fonction f définie sur l'intervalle [ 0 ; 4 ] par f ( x ) = 2 x. 2 − 7 x + 5. 1. Soit f 'la fonction dérivée de la 



Exercice corrigé Chapitre 6 : fonctions dérivées

Exercice corrigé. Chapitre 6 : fonctions dérivées. Lors d'une compétition d'athlétisme un entraineur analyse la technique d'un lanceur de poids.



Exercice probabilité terminale bac pro corrigé

En 1ère Bac Pro : 1 CCF en maths Activités - Cours Exercices Evaluations Cours à la fonction dérivée Terminale activité geogebra derivée et variations ...



de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1

Calculer la fonction dérivée de f et étudier son signe. 4. Dresser le tableau de variations de f. 5. Tracer la courbe représentative de f. Corrigé. Exercice 



EXERCICES SUR LES DERIVEES Bac Pro

c) Établir le tableau de variation de la fonction f. 4) a) De la question précédente déduire le valeur de R pour laquelle l'aire A est minimale. b) Calculer la 



Devoir sur la fonction dérivée et létude des variations dune fonction

(D'après sujet de Bac Pro Session juin 2009). La société Boute fabrique des bouteilles de plongée à partir de tubes d'acier sans soudure grâce à.



épreuve de spécialité - session 2021

La fonction dérivée de f est la fonction f ? définie sur R par : Dans tout l'exercice l'espace est rapporté au repère orthonormé (A ; # ».



Corrigé du baccalauréat S Polynésie du 10 juin 2016 7 points

10 juin 2016 C d'alcool dans le sang (taux d'alcoolémie) en fonction du temps t après ingestion de ... On note f ? la fonction dérivée de la fonction f .



MATHEMATIQUES A LUSAGE DE LETUDIANT DE BAC PRO EN

BAC PRO EN BTS Dans les trois exercices de cette section il s'agit de développer



EXERCICES SUR LES DERIVEES Bac Pro tert

4) En déduire la valeur de x pour laquelle la fonction f admet un maximum. (D'après Bac Pro Restauration et alimentation Session juin 2003). Exercice 3.



Exercice probabilité terminale bac pro corrigé pdf

à la fonction dérivée Terminale activité geogebra derivée et variations Exercices tableau de signes et variations Exercices de rappels fonctions : tableau 

?CORRIGÉ BACCALAURÉAT GÉNÉRAL?

ÉPREUVE D"ENSEIGNEMENT DE SPÉCIALITÉ

Session2021Sujet 0

EXERCICE1 commun à tousles candidats 5 points

1.On considère les suites (un) et (vn) telles que, pour tout entier natureln,

u n=1-?1 4? n etvn=1+?14? n On considère de plus une suite (wn) qui, pour tout entier natureln, vérifieun?wn?vn.

On peut affirmer que :

a.Les suites(un)et(vn)sont géométriques.b.La suite (wn) converge vers 1. c.La suite(un)est minorée par 1.d.La suite(wn)est croissante. Application directe du théorème dit "des gendarmes».

2.On considère la fonctionfdéfinie surRpar :f(x)=xex2.

La fonction dérivée defest la fonctionf?définie surRpar : a.f?(x)=2xex2b.f?(x)=(1+2x)ex2 c.f?(x)=(1+2x2)ex2 d.f?(x)=(2+x2)ex2. f?(x)=1×ex2+x×2xex2=?1+2x2?ex2

3.Que vaut limx→+∞x

2-1

2x2-2x+1?

a.-1b.0c.1

2d.+∞.

limx→+∞x

2-12x2-2x+1=limx→+∞x

2? 1-1 x2? x2?

2-2x+1x2?

=limx→+∞1-1 x2

2-2x+1x2=12

4.On considère une fonctionhcontinue sur l"intervalle [-1 ; 1] telle que

h(-1)=0h(0)=2h(1)=0.

On peut affirmer que :

a.La fonctionhest croissante sur l"intervalle [-1 ; 0]. b.La fonctionhest positive sur l"intervalle [-1 ; 1]. c.Il existe au moins un nombre réeladans l"intervalle [0; 1] tel queh(a)=1. d.l"équationh(x)=1 admet exactement deux solutions dans l"intervalle [-1 ; 1]. Application du théorème des valeurs intermédiaires sur l"intervalle [0 ; 1].

5.On suppose quegest une fonction dérivable sur l"intervalle [-4 ; 4]. Ondonne ci-contre la repré-

sentation graphique de safonctiondérivéeg?.

On peut affirmer que :

a.gadmet un maximum en-2. b.gestcroissantesurl"intervalle[1;2]. c.gest convexe sur l"intervalle [1; 2]. d.gadmet un minimum en 0.

0 1 2 3 4-1-2-3-40

-11 23
C g? La fonctiong?est croissante sur l"intervalle [1 ; 2], donc la fonctiongest convexe sur cet intervalle. Baccalauréat Général Épreuved"enseignement de spécialitéA. P. M. E. P.

EXERCICE2 commun à tousles candidats 5 points

On considère le cube ABCDEFGH de côté 1, le milieu I de [EF] et Jle symétrique de E par rapport à F.

ABCDH EG I ??F J Dans tout l"exercice, l"espace est rapporté au repère orthonormé?

A ;# »AB,# »AD,# »AE?

Les sommets du cube ont pour coordonnées : A

(000)) , B((100)) , D((010)) , E((001)) , C((110)) , F((101)) , H((011)) et G((111))

1. a.• Le point I est le milieu de [EF] donc I a pour coordonnées((1

201))
• Le point J est le symétrique de E par rapport à F, donc J a pour coordonnées((201)) b.On en déduit les coordonnées des vecteurs# »DJ((2 -1 1)) ,#»BI((-1 201))
et# »BG((011))

c.• Les vecteurs#»BI et# »BGne sont pascolinéaires donccesont deuxvecteurs directeursduplan

(BGI). •# »DJ·#»BI=-1+0+1=0 donc# »DJ?#»BI. •# »DJ·# »BG=0-1+1=0 donc# »DJ?# »BG.

Donc le vecteur# »DJ est orthogonal à deux vecteurs non colinéaires du plan (BGI), donc il est

normal au plan (BGI). d.• Le vecteur# »DJ((2 -1 1)) est normal auplan (BGI)doncle plan (BGI)aune équation delaforme

2x-y+z+d=0.

• LepointBappartientauplan(BGI)donclescoordonnéesdeBvérifientl"équationduplan; donc 2xB-yB+zB+d=0, ce qui équivaut à 2-0+0+d=0, ce qui veut dire qued=-2. Donc une équation cartésienne du plan (BGI) est 2x-y+z-2=0.

2.On notedla droite passant par F et orthogonale au plan (BGI).

a.La droitedest orthogonale au plan (BGI), et# »DJ est un vecteur normal au plan (BGI), donc# »DJ

est un vecteur directeur de la droited. (x;y;z) tels que# »FM et# »DJ soient colinéaires.

Corrigédu sujet 0 -2session 2021

Baccalauréat Général Épreuved"enseignement de spécialitéA. P. M. E. P. # »FM et# »DJ colinéaires??# »FM=t.# »DJ?????x-1=t×2 y-0=t×(-1) z-1=t×1

Donc la droiteda pour équation???x=1+2t

y= -t z=1+t,t?R b.On considère le point L de coordonnées?2

3;16;56?.

• Pour prouver que L?d, on cherchetpour que?????2

3=1+2t

1 6= -t 5 6=1+t

On trouvet=-1

6donc L?d.

• Le plan (BGI)a pour équation 2x-y+z-2=0; or 2xL-yL+zL-2=4

3-16+56-2=0, donc

L?(BGI).

Le point L est donc le point d"intersection de la droitedet du plan (BGI).

3. a.La pyramide FBGI a pour base le triangle rectangle FBG, et pour hauteur IF.

• IF=1 2 • Le triangle rectangle FBG a pour aire

FG×FB

2=12.

Le volume de la pyramide FBGI est doncV=1

3×12×12=112.

b.La droitedest orthogonale au plan (BGI) et coupe ce plan en L. Le point F appartient à la droited, donc on peut dire que la distance FL est la distance du point Fau plan (BGI), autre- ment dit c"est la hauteur de la pyramide FBGI dont le triangleBGI est la base. FL 2=?2 3-1? 2 +?16-0? 2 +?56-1? 2 =19+136+136=636=16donc FL=1?6 On appelleAl"aire du triangle BGI. On exprime le volume de la pyramide FBGI : V=1

3×FL×A??112=13×1?6×A??3×?

6

12=A??A=?

6 4

L"aire du triangle BGI est égale à?

6 4.

EXERCICE3 commun à tousles candidats 5 points

Pour préparer l"examen du permis de conduire, on distingue deux types de formation :

— la formation avecconduite accompagnée;

— la formationtraditionnelle.

On considère un groupe de 300 personnes venant de réussir l"examen du permis de conduire. Dans ce

groupe : — 75personnesontsuiviuneformationavecconduiteaccompagnée;parmielles,50ontréussil"exa-

men à leur première présentation et les autres ont réussi à leur deuxième présentation.

— 225personnessesontprésentéesàl"examensuiteàuneformationtraditionnelle;parmielles,100

ont réussi l"examen àla première présentation, 75 àla deuxième et 50 àla troisième présentation.

On interroge au hasard une personne du groupe considéré.

On considère les évènements suivants :

A: "la personne a suivi une formation avecconduite accompagnée»; R

1: "la personne a réussi l"examen à la première présentation»;

R

2: "la personne a réussi l"examen à la deuxième présentation»;

R

3: "la personne a réussi l"examen à la troisième présentation».

1.On modélise la situation par un arbre pondéré.

Corrigédu sujet 0 -3session 2021

Baccalauréat Général Épreuved"enseignement de spécialitéA. P. M. E. P. A 75
300R
1 50
75
R 2 25
75
R 3 0 A 225
300R
1100
225
R 2 75
225
R 3 50
225

2. a.La probabilité que la personne interrogée ait suivi une formation avecconduite accompagnée

et réussi l"examen à sa deuxième présentation est : P (A∩R2)=P(A)×PA(R2)=75

300×2575=25300=112.

b.La probabilité que la personne interrogée ait réussi l"examen à sa deuxième présentation est

égale àP(R2)..

D"après la formule des probabilités totales : P (R2)=P(A∩R2)+P?

A∩R2?

c.La personne interrogée a réussi l"examen à sa deuxième présentation. La probabilité qu"elle

ait suivi une formation avecconduite accompagnéeest : P

R2(A)=P(A∩R2)

P(R2)=1

12 1

3=312=14.

3.On noteXla variable aléatoire qui, à toute personne choisie au hasard dans le groupe, associe le

nombre de fois où elle s"est présentée à l"examen jusqu"à sa réussite.

Ainsi,X=1 correspond à l"évènementR1.

a.La loi de probabilité de la variable aléatoireXest :quotesdbs_dbs1.pdfusesText_1
[PDF] fonction dérivée et étude des variations d'une fonction

[PDF] fonction dérivée exercice

[PDF] fonction dérivée exercice corrigé 1ere es

[PDF] fonction dérivée exercice corrigé 1ere s

[PDF] fonction dérivée terminale stmg

[PDF] fonction des mots pdf

[PDF] fonction du controle strategique

[PDF] fonction du personnage de roman

[PDF] fonction exercice corrigé 3eme

[PDF] fonction exponentielle bac pro exercice

[PDF] fonction exponentielle domaine de définition

[PDF] fonction exponentielle exercices corrigés bac pro

[PDF] fonction exponentielle exercices corrigés bac pro pdf

[PDF] fonction exponentielle exercices corrigés pdf

[PDF] fonction exponentielle exercices corrigés terminale es