[PDF] 1. BIOCHIMIE STRUCTURALE 1.3- LES GLUCIDES 1. Composition





Previous PDF Next PDF



Les glucides Les glucides

Parmi les cétoses on retient : Le fructose : C6H12O6 : même formule brute que le glucose mais c'est un hexocétose et non pas un hexoaldose. C'est le sucre 



glucides.pdf

le fructose). Formules linéaires du glucose du galactose et du fructose. Page 3. 3. 1.2.1. Le glucose. De formule brute C6H12O6



La consommation du fructose vers le syndrome métabolique

1 juin 2017 Le fructose ou sucre de fruit



BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET

14 mars 2023 La concentration en masse totale de sucre dans ce jus est de 107 g·L–1. Les molécules de glucose et de fructose. Leur formule brute est ...



Chapitre Chimie N° 3 Les glucides

Q3/Quelle est la formule brute de ces 3 molécules? Conclure. Ces 3 glucides Fructose... Aretenir Ü€ •Les oses sont tous constitues de plusieurs fonctions ...



Le 25-diméthylfurane : un carburant davenir ? (10 points) Le 25-diméthylfurane : un carburant davenir ? (10 points)

fructose et du glucose tous deux de formule brute C6H12O6 s'écrit : 6 CO2 + 6 H2O → C6H12O6 + 6 O2. Cet exercice s'intéresse à une espèce chimique ...



Sucroseglucose

https://www.revmed.ch/view/495441/4091852/RMS_idPAS_D_ISBN_pu2012-09s_sa05_art05.pdf



Correction Ex 1) Le sucre est un solide moléculaire constitué de

La formule brute du cholestérol est C27H46O. A quelle masse correspond 790 fructose



BACCALAURÉAT TECHNOLOGIQUE SCIENCES ET

20 juin 2017 Le glucose et le fructose ont les formules semi-développées suivantes : Glucose. Fructose. 1.1 Déterminer la formule brute de ces deux molécules ...



glucides.pdf

Formules linéaires du glucose du galactose et du fructose De formule brute C6H12O6



État des lieux

La consommation de fructose fait l'objet d'une controverse quant à ses effets sur la santé. Cette isomère du glucose (même formule brute mais structure.



État des lieux

La consommation de fructose fait l'objet d'une controverse quant à ses effets sur la santé. Cette isomère du glucose (même formule brute mais structure.



État des lieux

Formule brute : C6H12O6. - Famille des sucres ou glucides simples qui regroupe les monosaccharides (glucose



LES GLUCIDES

On appelle isomères des composés qui ont la même formule brute mais des formules développées différentes. Formes pyraniques et furaniques du D-fructose.



Untitled

Un glucide a par formule brute: Cn Hy Oz. Un glucide possède. II. Chapitre Chimie N° 3. Les glucides. Exemples de glucides: Glucose Fructose



La consommation du fructose vers le syndrome métabolique

1 juin 2017 Le fructose ou sucre de fruit



1. BIOCHIMIE STRUCTURALE 1.3- LES GLUCIDES 1. Composition

Cette formule brute explique le terme utilisé en anglais d'hydrate de carbone. formé de ?-glucose et de ?-fructose liés en ? 1?2.



CHAPITRE I : LES GLUCIDES

La formule brute du Glucose fructose



Correction Ex 1) Le sucre est un solide moléculaire constitué de

La formule brute du cholestérol est C27H46O. Ex 3) On veut préparer un sirop très léger de fructose (C6H12O6) qui est un sucre.

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 1 / 18 -

1. BIOCHIMIE STRUCTURALE

1.3- LES GLUCIDES

Groupe de composés aux fonctions très importantes :

• Rôle énergétique : glucose (forme d'énergie di rectement utilisa ble par les cellules), amidon

(forme de stockage du glucose chez les végétaux), glycogène (forme de stockage du glucose chez les

animaux)...

• Rôle structural : cellulose (constituant principal de la paroi des cellules végétales, polymère de

glucose), chitine (polymère de N-acétylglucosamine, carapace des arthropodes et paroi des mycètes)...

• Signau x de reconnaissanc e et de commu nication entre les cellules : glycoproté ines membranaires (exemple des antigènes des groupes sanguins A, B, O).

1. Composition élémentaire

C, H, O

2. Fonctions chimiques

Groupe carbonyle : fonctions aldéhyde ou cétone

Groupe hydroxyle : fonction alcool

3. Classification des glucides

Également appelés monosaccharides ou sucres simples

Non hydrolysables

Molécules comportant de 3 à 7 atomes de carbone

Formule brute : C

n H 2n O n : C n (H 2 O) n Cette formule brute explique le terme utilisé en anglais d'hydrate de carbone.

Polyol qui porte au moins 2 fonctions alcools dont l'une au moins est une fonction alcool primaire, et une

groupement carbonyle réductrice, soit : • aldéhyde (-CHO) dans ce cas l'ose est un aldose. • cétone (>C=O) dans ce cas l'ose est un cétose. L'ose le plus répandu est un aldohexose en C6 : le glucose.

Formule brute : C

6 H 12 O 6

Glucides Non hydrolysables = oses = molécules de base Hydrolysables = osides Condensation d'un ou de plusieurs oses = holosides Condensation d'oses et de consti tuants non glucidiques = hétérosides

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 2 / 18 -

1.3.1- LES OSES

1. Formule développée et isomérie ............................................................................................................... 3

1.1. Isomères de constitution (de fonction) ......................................................................................... 3

1.2. Stéréoisomères ............................................................................................................................. 3

1.2.1. Nombre de stéréoisomères ............................................................................................... 3

1.2.2. Représentation de Fischer ................................................................................................ 3

1.2.3. Diversité des stéréoisomères ............................................................................................ 4

1.2.4. Pouvoir rotatoire .............................................................................................................. 5

2. Structures cyclisées ................................................................................................................................... 6

2.1. Mise en évidence de l'existence de la structure cyclisée du glucose ........................................... 6

2.1.1. Réaction au réactif de Schiff ............................................................................................ 6

2.1.2. Réaction d'hémiacétalisation en présence d'un alcool .................................................... 6

2.1.3. Explication possible aux deux premières expériences ..................................................... 6

2.1.4. Phénomène de mutarotation ............................................................................................. 6

2.1.5. Conclusion ....................................................................................................................... 7

2.2. Représentation de Tollens ............................................................................................................ 7

2.3. Représentation de Haworth .......................................................................................................... 8

3. Propriétés des oses et du glucose .............................................................................................................. 9

3.1. Propriétés physiques ..................................................................................................................... 9

3.1.1. Propriétés optiques ........................................................................................................... 9

3.1.2. Propriétés polaires ............................................................................................................ 9

3.1.3. Thermodégradable ........................................................................................................... 9

3.1.4. Goût sucré ........................................................................................................................ 9

3.2. Propriétés chimiques .................................................................................................................. 10

3.2.1. Stabilité .......................................................................................................................... 10

3.2.2. Réactions d'oxydation des oses ..................................................................................... 10

3.2.3. Réaction de réduction des oses ...................................................................................... 12

3.2.4. Estérification .................................................................................................................. 13

3.2.5. Déshydratation à chaud .................................................................................................. 13

3.2.6. Épimérisation ................................................................................................................. 14

3.2.7. Interconversion des oses ................................................................................................ 14

4. Diversité des oses ................................................................................................................................... 14

4.1. Classification des oses ................................................................................................................ 14

4.1.1. En fonction du nombre de carbones .............................................................................. 14

4.1.2. En fonction de la nature de la fonction réductrice ......................................................... 14

4.1.3. Convention de numérotation .......................................................................................... 14

4.2. Principaux oses ........................................................................................................................... 15

4.2.1. D-ribose ......................................................................................................................... 15

4.2.2. Hexoses .......................................................................................................................... 15

4.3. Dérivés d'oses ............................................................................................................................ 16

4.3.1. Désoxyoses .................................................................................................................... 16

4.3.2. Acides (glyc)uroniques .................................................................................................. 16

4.3.3. (Glyc)osamines ou (hex)osamines : dérivés aminés d'oses ........................................... 16

4.3.4. Polyols ou glycitols : glycérol, sorbitol, xylitol ............................................................. 16

4.3.5. Dérivés autres : acide ascorbique ................................................................................... 16

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 3 / 18 -

1. Formule développée et isomérie

1.1. Isomères de constitution (de fonction)

Des isomères de consti tution sont des molé cules de même formule brute ma is de formules

développées différentes. On distingue les isomères de chaîne, de position et de fonction.

Les isomères de fonction possèdent des groupes fonctionnels différents, donc des propriétés

physiques et chimiques différentes. Les oses les plus simples ont trois atomes de carbone : glycéraldéhyde et dihydroxyacétone • Aldose : glucide avec fonction aldéhydique en bout de chaîne (C1) • Cétose : glucide avec fonction cétone à l'intérieur de la chaîne (C2). D(+)-glycéraldéhyde L(-)-glycéraldéhyde Dihydroxyacétone Figure 1 : distinction entre un aldose et un cétose (exemple avec C3)

On remarque que le C

2 du glyc éraldéhyde porte 4 substituants différent s Þ C as ymétrique Þ

propriétés optiques (pouvoir rotatoire) : existence de 2 isomères optiques images l'un de l'autre dans un

miroir : on parle d'énantiomères (D-glycéraldéhyde et L-glycéraldéhyde).

1.2. Stéréoisomères

1.2.1. Nombre de stéréoisomères

Le glucose a pour formule développée :

HOH 2 C - C

HOH - C

HOH - C

HOH - C

HOH - CH = O

Il possède 4 carbones asymétriques (C

). Il existe donc 2 4 = 16 stéréoisomères différents.

Les stéréoisomè res sont des isomères de configuration, c'est-à-dire des molé cules de

constitution identique mais dont l'organisation spatiale des atomes est différente.

Pour visualiser les stéréoisomères, on utilise la représentation ou projection de Fischer.

Rappel : représentation de Cram

• C dans le plan de la feuille. • Liaison en pointillés : liaison dirigée vers l'arrière. • Liaison en trait épais : liaison dirigée vers l'avant.

1.2.2. Représentation de Fischer

La projection de Fischer est surtout utilisée pour représenter les sucres et les acides aminés. Elle fut inventée par Emil Fischer. Passage de la représentation de Cram à la représentation de Fischer : • la chaîne carbonée est orientée avec son groupement le plus oxydé dirigé vers le haut • les traits verticaux symbolisent des liaisons dirigées vers l'arrière • les traits horizontaux symbolisent des liaisons dirigées vers l'avant C OH CHOH CH 2 OH CH 2 OH C CH 2 OH O C OH CH 2 OH OHH C OH CH 2 OH HHO

Emil Fischer

1852-1919

Prix Nobel de

Chimie 1902

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 4 / 18 - On ne représente pas les atomes de carbone, ils sont situés à l'intersection des segments

horizontaux et du trait vertical. La représentation de Fischer est souvent allégée en ne marquant la

position des groupements OH que par des tirets.

Par convention, le D-glycéraldéhyde est l'énantiomère qui a le groupement OH positionné à

droite dans la représentation de Fischer. Cette représentation permet de différencier facilement les énantiomères chiraux 1

L ou D.

Figure 2 : représentations de Cram et de Fischer du D-glucose On clas se les isomères de configurat ion en trois grands groupes : les énantiomères, les diastéréoisomères et les épimères.

1.2.3. Diversité des stéréoisomères

a. Énantiomères Un énantiomère est un isomère de configuration non superposable à son homologue après symétrie dans un miroir.

Tous les ose s possèdent un pouvoir rotatoire

2 du fai t de la présence d'un carbone asymétrique, les oses sont dits chiraux.

Deux énantiomè res ont les mêmes propriétés physiques et chi miques à l'except ion

d'une seule : leur pouvoir rotatoire opposé. Dans la forme D, le groupement alcool (-OH) porté par le carbone n - 1 est à droite (en représentation de Fischer) comme le (+)-glycéraldéhyde. Dans la forme L, le groupement alcool (-OH) porté par le carbone n - 1 est à gauche (en représentation de Fischer) comme le (-)-glycéraldéhyde. Figure 3 : énantiomères du glucose ; forme D-glucose = forme naturelle.

Les oses de la série D sont naturels.

Un méla nge équimolaire de 2 énanti omères est appelé mélange racém ique. Il se

caractérise par l'absence d'un pouvoir rotatoire car les effets d'un des énantiomères sur la

déviation du plan de la lumière polarisée sont annulés par ceux du second. 1 Molécule chirale : molécule qui ne peut pas se superposer à son image dans un miroir 2

Pouvoir rotatoire : se dit du pouvoir qu'ont les substances asymétriques de faire tourner le plan de polarisation de la lumière.

Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 5 / 18 - b. Diastéréoisomères

Les diastéréoisomères sont les stéréoisomères qui ne sont pas des énantiomères.

c. Epimères Deux épimères ne diffèrent entre eux que par la configuration absolue d'un seul carbone asymétrique, comme par exemple entre le D-mannose et le D-glucose ou encore entre le

D-glucose et le D-galactose.

1.2.4. Pouvoir rotatoire

En soluti on, les formes énantiom ères d'une molécule portant un c arbone asymétrique

présentent des propriétés optiques différentes. Chaque énantiomère dévie le plan de polarisation

d'une onde monochromatique polarisée (angle égal en valeur absolue mais de signe opposé).

Cette propriété est caractérisée par le pouvoir rotatoire spécifique qui répond à la loi de Biot :

í µ : angle de rotation observée en degré (°). : pouvoir rotatoire spécifique de la substance, constant pour une température et une longueur d'onde données (en °·g -1

·dm

2 â„“ : longueur de la cellule contenant la substance, traversée par la lumière (en dm) í µ : concentration massique de la substance (en g·mL -1

D-glucose L-glucose

ENANTIOMÈRES

Épimère (en C2) du D-glucose Épimère (en C4) du D-glucose

D-mannose D-galactose

DIASTEREOISOMERES

Figure 4 : illustration de la notion d'énantiomères, d'épimères et de diastéréoisomères

Voir planche filiation des oses

Remarque : en général, le suffixe des aldoses est " -ose » alors que celui des cétoses est " -ulose » (sauf exceptions : fructose,

sorbose,...). OH CH 2 OH OH CH 2 OH OH CH 2 OH OH CH 2 OH Cours biochimie BTS_ABM1 2019-2020 C. Larcher 1.3.1- Oses - Page 6 / 18 -

2. Structures cyclisées

2.1. Mise en évidence de l'existence de la structure cyclisée du glucose

2.1.1. Réaction au réactif de Schiff

Le glucose possède une fonction aldéhydique. En présence du réactif de Schiff, on devrait

obtenir une coloration rouge que l'on n'obtient pas !

2.1.2. Réaction d'hémiacétalisation en présence d'un alcool

Une molécule avec une fonction aldéhyde ou cétone est capable de réagir successivement avec deux molécules d'alcool (ici le méthanol) suivant les réactions suivantes :

En présence d'HCl anhydre :

Aldéhyde + méthanol ® hémiacétal Hémiacétal + méthanol ® acétal + eau

R-CHO + CH

3

OH ®

Aldéhyde + méthanol Hémiacétal

+ CH 3

OH ®

+ H 2 O

Hémiacétal méthanol Acétal

Figure 5 : réaction d'hémiacétalisation entre un aldéhyde et un alcool Dans les mêmes conditions, le glucose ne réagit qu'avec une seule molécule de méthanol !

2.1.3. Explication possible aux deux premières expériences

Dans le glucose, il s'est produit une réaction entre la fonction a ldéhydique et un des

groupements OH (= réaction d'hémiacétalisation intramoléculaire). Ceci expliquerait pourquoi le

glucose n'est pas capable de colorer le réactif de Schiff et pourquoi il ne peut réagir qu'avec une

seule molécule de méthanol (puisqu'il aurait déjà réagi avec une fonction alcool pour se retrouver

sous la forme d'un hémiacétal).

2.1.4. Phénomène de mutarotation

La cristallisation du D-glucose dans des solvants différents (éthanol, pyrimidine) conduit non

pas à un seul produit mais à 2 produits dont les pouvoirs rotatoires sont différents. Ces 2 formes ont

été qualifiées de forme á (+ 112°), cristallisation dans l'éthanol (conditions !), et de forme â

(+ 19°), cristallisation dans la pyrimidine (conditions "). Ces deux formes sont dites anomères.

On observe pour chacune des formes mises en solution aqueuse, en fonction du temps, une

évolution du pouvoir rotatoire qui atteint pour chacune des formes la même valeur + 52,5°. Cette

valeur correspond à une proportion d'environ 1/3 de l'anomère a et 2/3 de l'anomère b. RC OH H OCH 3 RCquotesdbs_dbs1.pdfusesText_1
[PDF] formule calcul irpp congo-brazzaville

[PDF] formule calcul mensualité emprunt excel

[PDF] formule calcul rapport de boite

[PDF] formule chimique du miel

[PDF] formule chute libre avec vitesse initiale

[PDF] formule dactualisation des prix

[PDF] formule d'actualisation des prix marchés publics

[PDF] formule d'ito exercices corrigés

[PDF] formule d'une force

[PDF] formule de calcul prescurtat clasa a 7

[PDF] formule de fabrication d'aliment de betail

[PDF] formule de la moyenne intégrale exercice

[PDF] formule de math 3eme

[PDF] formule de math 3eme pdf

[PDF] formule de peinture ? l'eau