[PDF] PERFORMANCE COMPARISON OF WIDE AREA DIFFERENTIAL





Previous PDF Next PDF



Error Modeling for Differential GPS

12 May 1995 Differential GPS (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site.



Accuracy Assessments of Differential Global Positioning System

2 Dec 2019 Keywords: Accuracy assessment HRSI



Using differential GPS for forest traverse surveys

In this study differential GPS (DGPS) positioning has been used to demonstrate that the GPS traverse survey is a cost-effective technique capable of achieving 



Differential GPS

Differential GPS. Fundamentals of GNSS. Workshop on GNSS Data Application to Low Latitude Ionospheric. Research. Trieste – Italy 06-17 May 2013.



Low-cost implementation of Differential GPS using Arduino

2 Sept 2016 Keywords: Differential GPS Arduino



Global Differential GPS Positioning without Using a Base Station

For position accuracy to be better than SPP differential GPS. (DGPS) positioning techniques must be employed. The basic idea of DGPS positioning is the 



DGPS Guidelines

5 Aug 1997 DIFFERENTIAL GPS SERVICE. Ronald L. Ketchum. John J. Lemmon. J. Randy Hoffman. Institute for Telecommunication Sciences.



Differential Global Positioning System (DGPS) Operation and Post

The following operating procedures provide consistent differential GPS data for the synchronous impulse reconstruction (SIRE) radar data collection (3). Raw 



Differential Global Positioning System (DGPS) for Flight Testing

The use of land-based differential GPS (DGPS) reference stations improves accuracy to about one meter for relatively stationary platforms and to a few.



PERFORMANCE COMPARISON OF WIDE AREA DIFFERENTIAL

3 Feb 2002 The achievable DGPS positioning accuracy depends primarily on the. 1. Page 16. PERFORMANCE COMPARISON OF WIDE AREA DIFFERENTIAL GPS SYSTEMS.

PREFACE

In order to make our extensive series of technical reports more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text.

PERFORMANCE COMPARISON OF WIDE

AREA DIFFERENTIAL

GPS

Tamas Horvath

Department

of Geodesy and Geomatics Engineering

University

ofNew Brunswick

P.O. Box 4400

Fredericton, N.B.

Canada

E3B 5A3

February

2002

Horvath, 2001

PREFACE

This technical report is an unedited reproduction of a diploma thesis submitted in partial fulfillment of the requirements for the degree of Dipl. Ing. in the Department of Geodesy and Surveying of the Budapest University of Technology and Economics, November 2001. The research was supervised by Drs. Richard B. Langley (of the University of New Brunswick) and Gy. Graczka (of the Budapest University of Technology and Economics). Support was partially provided by the Natural Sciences and Engineering Research Council of Canada. As with any copyrighted material, permission to reprint or quote extensively from this report must be received from the author. The citation to this work should appear as follows:

Horvath,

T. (2002). Performance Comparison of Wide Area Differential GPS Systems. Diploma thesis, Budapest University of Technology and Economics, Department of Geodesy and Geomatics Engineering Technical Report No. 212, University of New

Brunswick, Fredericton, New Brunswick, Canada,

143 pp.

PERFORMANCE WIDE AREA DIFFERENTIAL GPS

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Richard B. Langley for giving me the opportunity to spend seven months at the Geodesy and Geomatics Engineering Department. Thanks for his guidance, supervision and time. I would also like to thank Dr. Gyula Graczka, my Hungarian supervisor for encouraging my studies in the GPS field.

The members

of the GPS Group are acknowledged for supporting my research. Thanks to Sunil Bisnath, Dong Hyun Kim, and Tomas Beran for their patience, valuable advice, and friendship. I am very grateful to Sunil Bisnath for his hospitality, and ever good mood. Bence Takacs is greatly acknowledged for his advises and help. Many thanks to Andre Caffier for being my friend in the last six months. Special thanks to my family for their encouragement and support. ii

PERFORMANCE COMPARISON WIDE AREA DIFFERENTIAL GPS

TABLE OF

Acknowledgements ........................................................................ ................................ ii Table of Contents ........................................................................ ................................. .iii List ofFigures ........................................................................ ........................................ v List ofTables ........................................................................ ........................................ vii A d. ... ppen J.ces ........................................................................ .......................................... vni Acronyms ........................................................................ ............................................. .ix

1. INTRODUCTION ........................................................................

...................... 1

1.1 Purpose of the Report ........................................................................

..... 2

1.2 Organization

of the Report ..................................................................... 3

2. GPS MEASUREMENT ERRORS ..................................................................... 5

2.1 System Errors ........................................................................

................. 6

2.1.1 Satellite Clock Errors ................................................................. 6

2.1.2 Receiver Clock Errors ................................................................

2.1.3 Satellite Ephemeris Errors ......................................................... 7

2.2 Range Errors (Atmospheric Effects) ...................................................... 9

2.2.1 Ionospheric Delay ...................................................................... 9

2.2.2 Tropospheric Delay ..................................................................

12

2.3 Receiver-Related Errors .......................................................................

15

2.3 .1 Multi path ........................................................................

.......... 15

2.3.2 Receiver Noise ........................................................................

. l6

3 BEACON DGPS ........................................................................

...................... 17

3.1 Beacon DGPS Background .................................................................. 17

3.2 Test Measurements at UNB ................................................................. l9

3.3 Investigation ofError Sources ............................................................. .32

3.3.1 Multipath ........................................................................

.......... 33

3.3 .2 Signal Strength ........................................................................

. 42

3.3.3 Noise ........................................................................

................. 44 3.3.4 DGPS Latency ........................................................................ .. 45

3.3.5 Biased Reference Coordinates .................................................. 46

3.3.6 Receiver Types ........................................................................

47

4 WIDE AREA DIFFERENTIAL GPS .............................................................. 50

4.1 Networked DGPS Background ............................................................ 51

4.1.1 NDGPS Classification .............................................................. 51

lll

4.1.2 N"etwork Elements .................................................................... 52

4.1.3 W

ADGPS Algorithms .............................................................. 54 5 OPERATIONAL ......................................................... 61

5.1 Wide Area Augmentation System (W AAS) ........................................ 61

5 .1.1 W AAS Background .................................................................. 61

5.1.2 Test Measurements at UNB ..................................................... 65

5.2 European Geostationary Navigation Overlay ......... 80

5 .2.1 EGNOS Background ................................................................ 80

5.2.2 Test Measurements at UNB ..................................................... 83

5.3 Canada-wide Differential GPS ............................................ 86

5.3.1 CDGPS Background ................................................................. 86

5.3.2 Test Measurements at

UNB ..................................................... 92 5.4 Other Operational Wide Area DGPS Systems ................................... 1 01

5.4.1 01nniSTAR ........................................................................

...... 101

5.4.2 SkyFix ........................................................................

............. 1 03

5.4.3 StarFire ........................................................................

........... l06

5.4.5 ICi-DG ........................................................................

.............. 108

5 .4.6 Star Fire -IGDG ...................................................................... 11 0

6 CARRIER PHASE AND PRECISE ............. 111

6.1 Carrier Phase ............................................................. oo ............. 111

6.1.1 Networked Carrier Phase ............................................. l14

6.1.2 Long-Range RTK Positioning ................................................ 115

6.2 Real-Time

Precise ............ oo .......................... 116 7. GNSS ........................................................................ .... ll8

7.1 GPS Modernization .................................................................. 118

7.2 Galileo .................

00 .... 00 ......................... 00 ............................................. 122

8. ARCI-UVING RTCM PSEUDORANGE .......................... 124

9. CONCLUSIONS AND RECOMMENDATIONS ......................................... 125 REFERENCES ........................................................................ ................................... 127 APPENDICES ........................................................................ .................................... 131 IV

PERFORMANCE WIDE AREA DIFFERENTIAL GPS

LIST OF FIGURES

Figure 2.1: Spatial Decorrelation of Satellite Ephemeris Errors ................................... 8

Figure 2.2:

Solar Cycle Progression ........................................................................ ..... 11 Figure 3.1: Radio beacon DGPS Reference Stations in Atlantic Canada ..................... 20

Figure 3.2: Beacon DGPS Test Architecture ................................................................ 20

Figure 3.3: NovAtel GPS-and CSI Beacon antenna on Gillin Hall roof.. .................. .21 Figure 3.4: Standalone GPS (blue) vs. Beacon DGPS-corrected (green) position errors (1 ) ........................................................................ ............... 28

Figure 3.5: Standalone

GPS (blue) vs. Beacon DGPS-corrected (green)

position errors (2) ........................................................................ 30
Figure 3.6: Horizontal error distribution of the standalone solution ............................ 31 Figure 3.7: Horizontal error distribution ofthe DGPS-corrected solution ................... 31 Figure 3.8: Horizontal error probability distribution functions (Standalone-blue, DGPS-green) ................................................................ .32

Figure 3.9: Strong Multi path Environment

on the Roof of Gillin Hall ....................... 34

Figure

3.10: Typical multipath effect on consecutive days' measurements ................. 35

Figure 3.11: Multipath effect on PRN 9 signal (time interval: 6 min 35 sec) .............. 38 Figure 3.12: Multipath effect on PRN 9 measurement (time interval: 2 min 38 sec) .. 39

Figure 3.13: Signal characteristics from Partridge Island ............................................

43

Figure 3.14: Signal characteristics from Point Escuminac .......................................... .43

Figure 3.15: DGPS Latency and Age ........................................................................

.. .45

Figure 3.16:

DGPS correction latency ........................................................................ .45

Figure 3.17:

DGPS correction age ........................................................................ ...... .46

Figure 3.18: Standalone

GPS (blue) vs. Beacon DGPS-corrected (green)

position errors (4) ........................................................................ 48
Figure 3.19: Standalone GPS (blue) vs. Beacon DGPS-corrected (green) solution comparison ........................................................................ ......... 49 Figure 4.1: The Canadian Active Control System Network Configuration ................. 57

Figure 4.2: Network

of Permanent EUREF Stations ................................................... 57

Figure 4.3: Applying ionospheric corrections ..............................................................

60

Figure 5.1: W AAS Architecture (simplified) ............................................................... 63

Figure 5.2: Footprints oflnmarsat GEOs ..................................................................... 64

quotesdbs_dbs1.pdfusesText_1
[PDF] gps différentiel leica

[PDF] gps différentiel prix

[PDF] gps différentiel trimble

[PDF] gps garmin 72h avis

[PDF] gps garmin 72h pack marine occasion

[PDF] gps garmin 72h prix

[PDF] gps mode d'emploi

[PDF] gps principe de fonctionnement pdf

[PDF] gps rtk fonctionnement

[PDF] gps topographie pdf

[PDF] gq sneakers

[PDF] grad bjelovar bjelovar

[PDF] grad bjelovar izbori

[PDF] grad bjelovar javni poziv

[PDF] grad bjelovarž