[PDF] PRODUIT SCALAIRE DANS LESPACE Donc est orthogonal à deux vecteurs





Previous PDF Next PDF



VECTEURS DROITES ET PLANS DE LESPACE

Propriétés : Deux vecteurs non nuls et non colinéaires déterminent la direction d'un plan. 2) Caractérisation d'un plan de l'espace. Propriété : Soit un point  



DROITES ET PLANS DE LESPACE

Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires. d1 et d2 sont coplanaires d1 et d2 sont sécantes.



Plan et espace

19 nov. 2014 Un plan vectoriel est un espace vectoriel contenant deux vecteurs non colinéaires et dans lequel tout vecteur est combinaison linéaire de ces ...



espace diamant hiver 2021-2022 v9 BD zone saisies

le Plan. Ruan. Jonction Praz les Prés. Péchette. Bélier. Arète liaison Périots-Covetan le Pla n ay. La Légette. 1865 m. BISANNE 1500. Mont Bisanne.



VECTEURS DROITES ET PLANS DE LESPACE

G-01 ? VECTEURS DROITES ET PLAN DE L'ESPACE. VECTEURS



Espace Liberté 2020-2021 V8 HD

ite du Forfait ESPACE LIBERTE Plan de Croix. Mont Linleu. 2093 m. Crêt Béni. 1536 m. La Combe. 1630 m. Petit Châtel.



Chapitre 8 - Équations cartésiennes dans lespace

Définition 8.2. n est dit vecteur normal au plan P lorsqu'il est orthogonal à deux droites sécantes incluses dans P . Propriété 8.6. Soit n normal à 



PRODUIT SCALAIRE DANS LESPACE

Donc est orthogonal à deux vecteurs non colinéaires de (ABG) il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan. Vidéo https://youtu.



Droites et plans de lespace

5) Un plan P partage l'espace c en trois parties non vides et disjointes : P et deux demi-espaces ouverts notés c+ et c-. Deux points a b sont dans le même 



Méthodes de géométrie dans lespace Déterminer une équation

Première étape : Déterminer un vecteur normal au plan (ABC). Rappels : Un vecteur est normal au plan s'il est orthogonal au plan.

PRODUIT SCALAIRE DANS LESPACE 1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My z .0AMn=n x-y+5z+1=0 1 1 5 n 1 2 1 A 3 3 1 n 7 Une équation cartésienne de P est de la forme . Le point A appartient à P donc ses coordonnées vérifient l'équation : donc .

Une équation cartésienne de P est donc .

3) Positions relatives d'une droite et d'un plan

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan P a pour équation .

Soit et .

1) Démontrer que la droite (AB) et le plan P sont sécants.

2) Déterminer leur point d'intersection.

1) Un vecteur normal de P est .

(AB) et P sont sécants si et ne sont pas orthogonaux. On a Comme , on conclut que (AB) et le plan P ne sont pas parallèles et donc sécants.

2) Une représentation paramétrique de la droite (AB) est :

3x-3y+z+d=0

313210d´--´ ++=

d=8

3x-3y+z+8=0

2x-y+3z-2=0

1 2 3 A 1 2 0 B 2 1 3 n n AB 2 0 3 AB .223350ABn=-´+´=¹ 8quotesdbs_dbs29.pdfusesText_35
[PDF] analyse comparative entre la finance islamique et le capital - IRTI

[PDF] IntroductIon - Larcier

[PDF] dans le génome humain - Laboratoire Sequence, Structure et

[PDF] 2 - La distinction du grade et de l 'emploi - lex publica

[PDF] Les Ressources Humaines

[PDF] Réseaux GSM, GPRS et UMTS

[PDF] 2G, 3G quelle différence - Homo Mobilus

[PDF] 2012-10-11 16:26 page no #0

[PDF] Quelques différences entre l 'école en Allemagne et en France

[PDF] DEMOCRATIE GRECQUE / DEMOCRATIE MODERNE - Les

[PDF] La forme des lentilles

[PDF] Les races et l 'intelligence_F - Polemia

[PDF] Fiche 1 La lettre formelle - Insuf-FLE

[PDF] Fiche 8 : Libre-échange et protectionnisme - Studyrama

[PDF] Il semble aujourd hui établi que Science et Littérature constituent