[PDF] Etude de la démarche expérimentale dans les situations de





Previous PDF Next PDF



Etude de la démarche expérimentale dans les situations de

12 mouh. 1433 AH avant le caractère expérimental des mathématiques nous pouvons ... L'hypothèse fondamentale de notre étude est que l'apprentissage de la.



Planification dune étude expérimentale et rédaction dune demande

Traduit par G. Bordage avec l'autorisation de Medical Education



Méthodes quantitatives pour évaluer les interventions visant à

Études quasi expérimentales . Choix du plan d'étude expérimental ou d'observation . ... développons longuement ce schéma expérimental de référence.



Schémas détude

Étude expérimentale. Essai randomisé contrôlé. Étude observationelle longitudinale comparative. Prospective. Cohorte / Exposés-non-exposés. Rétrospective.



Les différentes Etudes en épidémiologie

Définir et distinguer étude expérimentale et étude observationnelle Définition et champ de l'épidémiologie l'épidémiologie est l'étude de la ...





ETUDE EXPERIMENTALE ET NUMERIQUE DE

10 joum. oul. 1437 AH Le troisième chapitre présente une analyse comparative du nombre de Poiseuille théorique et expérimental pour des écoulements dans des ...



Etude expérimentale et modélisation de la stabilité des

21 raj. 1426 AH PARTIE II : ETUDE DES TRANSITIONS DE PHASE DES PHYLLOSILICATES SOUS GRADIENT DE TEMPÉRATURE. 1 - Le dispositif expérimental.



Essais contrôlés randomisés (ECR)

Le modèle d'ECR le plus simple inclut un groupe expérimental (ou bras Dans le cas de l'ECR en grappes la puissance statistique de l'étude repose sur le ...



Etude expérimentale des roches à très faible perméabilité par la

Nous introduisons la définition de la perméabilité d'un milieu poreux et ses principales caractéristiques. Nous exposons ensuite les modèles de circulation des 



La recherche et ses méthodologies - Université Laval

>La recherche et ses méthodologies - Université Lavalwww2 ift ulaval ca/~chaib/IFT-6001/Slides/Rech-method pdf · Fichier PDF



Recherche qualitative recherche quantitative : expressions

>Recherche qualitative recherche quantitative : expressions https://www erudit org/fr/revues/rse/1994-v20-n4-rse1853/031766 · Fichier PDF



Fiche 1 Types d’études - Unitheque

>Fiche 1 Types d’études - Unithequehttps://www unitheque com/UploadFile/Extraits/2c87-Extrait_LCA_ · Fichier PDF



CHAPITRE 1 La méthode et la démarche

>CHAPITRE 1 La méthode et la démarchehttps://elearning univ-bejaia dz/pluginfile php/408971/mod_resourc · Fichier PDF



LES ETUDES CLINIQUES EN 20 QUESTIONS - Leem

>LES ETUDES CLINIQUES EN 20 QUESTIONS - Leemhttps://www leem org/sites/default/files/EtUDES · Fichier PDF



Claude Bernard : la médecine expérimentale

>Claude Bernard : la médecine expérimentalehttps://www academie-sciences fr/ pdf /hse/pse_Debru1 pdf · Fichier PDF



Stratégie thérapeutique: schémas expérimentaux et évaluation

>Stratégie thérapeutique: schémas expérimentaux et évaluationhttps://sesstim univ-amu fr/ /l3_biomedquant_essai_th2 pdf · Fichier PDF

.

THÈSEPour obtenir le grade deDOCTEUR DE L'UNIVERSITÉ DE GRENOBLESpécialité :Mathématiques

Arrêté ministérial :

Présentée par

Nicolas Giroud

Thèse dirigée parSylvain Gravier

et codirigée parDenise Grenier préparée au seinde l'Institut Fourier et del'école doctorale MSTII

Étude de la démarche expérimen-

tale dans les situations de re- cherche pour la classe

à soutenir publiquement le28 octobre 2011,

devant le jury composé de :

Mme Viviane Durand-Guerrier

Professeur à l'Université de Montpellier 2, Rapporteur

M. Michel Rigo

Professeur à l'Université de Liège, Rapporteur

M. Frédéric Mouton

Maître de conférences à l'Université Joseph Fourier à Grenoble, Examinateur

M. Denis Tanguay

Professeur à l'Université du Québec à Montréal, Examinateur

M. Sylvain Gravier

Directeur de recherche à l'Institut Fourier à Grenoble, Directeur de thèse

Mme Denise Grenier

Maître de conférences à l'Univesité Joseph Fourier à Grenoble, Co-Directeur de thèse

Étude de la démarche expérimentale dans

les situations de recherche pour la classe

Ici, c"est Grenoble...

Remerciements

Je voudrais commencer par remercier les membres de l"institut Fourier, aussi bien le personnel administratif et technique que les enseignants, cher- cheurs et doctorants, pour m"avoir accueilli durant mes années de thèse ainsi que durant mes études antérieures. Je tiens à remercier mes directeurs de thèse, Sylvain Gravier et Denise Grenier, pour avoir accepté d"encadrer ce travail ainsi quepour leur dispo- nibilité et leur soutien durant ces années. Ce travail doit beaucoup à leurs idées et à la complémentarité de leurs apports. Je remercie Michel Rigo et Viviane Durand-Guerrier, qui ontaccepté d"être rapporteurs de cette thèse. Leurs lectures attentives et leurs remarques me seront précieuses. Merci à Frédéric Mouton et Denis Tanguay d"avoir accepté d"être examinateur lors de la soutenance. Je tiens aussi à remercier Michèle et Évelyne pour m"avoir laisser faire mes expérimentations dans leurs classes. Mes remerciements vont également à l"ensemble de Maths à Modeler, les discussions que j"ai pues avoir avec ses membres m"ont beaucoup ap- pris. Je tiens, en particulier, à remercier Charles dont le point de vue est toujours pertinent et original; Sylvain pour m"avoir permis d"aller dans des conférences parfois éloignées; Cécile, Éric, Julien, Léa et Paul avec qui nous avons essayé de faire un " putsch » qui a, malheureusement, échoué mais qui m"a permis d"apprendre beaucoup de choses; Michèle et Karine avec qui travailler est très sympa; Laurent pour m"avoir " converti »à Linux et enfin la nouvelle génération : Aline, Aline Mex, Élise, Marion, Simon et Ximena, pour les différentes discussions que nous avons pues avoir sur " les chefs » et l"aide qu"ils ont pue m"apporter. Merci également à Robert pour son soutien moral et technique. Merci aussi aux membres de l"IREM de Grenoble de m"avoir si bien acceuilli. Merci à Hervé et Simon d"avoir accepté que j"occupe une partie de mes journées à fouiner dans leur bureau. En particulier, soutenir en ce jour béni, date de naissance du grand "mamon», est une grande fierté pour moi. Merci aussi aux différents doctorants et post-docs de l"institut Fourier que j"ai pu cotôyer durant mes années de thèse, en particulier à Éléonora, Antoine, Bashar, Camille, Clélia, Damien, Delphine, Hernan, Jeff, Johanna, Jorge Marianne, Mathieu, Maxime, Mickaël, Nicolas, Olivier, Samuel, Syl- vain.... La bonne ambiance ainsi que la solidarité qui règneentre les thé- sards est à préserver. Je voudrai aussi remercier plus particulièrement certainsthésards, mes ex-voisins de bureau : Jean, Max et Vincent. Même s"ils m"ontcontaminé i iiREMERCIEMENTS avec la " loose » du 112, les nombreuses discussions absurdesainsi que les bières que nous avons partagées resteront de très bons moments. Par rapport aux services que Jean m"a rendu notamment lorsqu"il a guetté le " chef », jour et nuit, afin d"obtenir sa signature etlorsqu"il a servi d"interface entre l"école doctorale et moi, je lui dois ce paragraphe (et plus). Alors merci à lui d"avoir pris sur son temps pour accomplir, avec brio et sans bavures, les quêtes que je lui avais confiées (finalementtu n"auras pas à te servir de ton fusil à cartouches soporifiques...). Mes remerciements vont également à Aline Mex et Simon pour leur aide précieuse dans les tâches administratives de ma soutenanceet à Sébastien sans qui ce manuscript n"aurait pas de page de couverture. Passons maintenant aux personnes avec qui j"ai partagé un bureau, merci à Nico " le ouf » pour ses conseils et ses chansons et à Thomas pour ses conseils en décoration de bureau. Je voudrais aussi remercier spécialement Alvaro et Ximena qui sont de- venus plus que des co-bureaux et qui ont rendu ces années de thèse beaucoup plus sympas à passer! Enfin je voudrais remercier tous ceux qui se reconnaîtront dans cette phrase : " Il n"y a que Grenoble », vous voyez que j"ai quand même un peu travaillé durant ces 4 dernières années! Pour finir, je voudrais remercier ma famille pour m"avoir soutenue et en particulier ma mère qui m"a éduqué, poussé à être meilleur, hébergé et nourri durant toutes mes études (et elles ont été longues!),sans elle rien n"aurait été possible.

Sommaire

Remerciementsi

Table des figuresiii

Introductionxiii

Problématique et contexte1

partie 1. Un point de vue épistémologique et didactique sur la démarche expérimentale en mathématiques5 Chapitre I. Un point de vue épistémologique sur la démarche expérimentale7

Chapitre II. La notion de concept-problème 21

Chapitre III. Démarche expérimentale et conception sur un problème 39 Chapitre IV. Quelques différences entre les mathématiques et les sciences expérimentales. 65 Chapitre V. Travaux didactiques autour de la démarche expérimentale 67 Chapitre VI. Les élèves pratiquent-ils la démarche expérimentale? 77

Chapitre VII. Jeu du set105

partie 2. Construction d"un milieu et hypothèses de recherche115 Chapitre VIII. Hypothèses de recherche et de travail 117 Chapitre IX. Éléments constitutifs d"un milieu pour la démarche expérimentale119 partie 3. Analyse deChercher la frontière129

Chapitre X. Analyse mathématique 131

Chapitre XI. Analyse didactique deChercher la frontière199 Chapitre XII. Première situation expérimentale 235 Chapitre XIII. Analyses de la première expérimentation 289 Chapitre XIV. Deuxième situation expérimentale 317 Chapitre XV. Analyse de la deuxième situation expérimentale 337 iii ivSOMMAIRE Chapitre XVI. Conclusion sur les situations expérimentales 347

Conclusion et perspectives de recherche 353

Annexe A. Convexité de Chercher la Frontière 361 Annexe B. Chercher la frontière sur des convexes 375 Annexe C. Fiche descriptive de la première expérimentation413 Annexe D. Fiche descriptive de la deuxième expérimentation419 Annexe E. Transcription de la première expérimentation 425 Annexe F. Transcription de la seconde expérimentation 509

Bibliographie565

Index571

Index571

Table des figures

.1 Extrait du programme de première S de 2002.. . . . . . . . . xii I.1 Exemple de stratégie. . . . . . . . . . . . . . . . . . . . . . 11 I.2 Configuration produite avec la stratégie du cavalier. . .. . . 11 I.3 Une configuration pour un cercle extérieur composé de 3 couleurs. 14 I.4 Une solution avec un cercle extérieur composé de 4 couleurs. 14 I.5 Une solution avec un cercle extérieur composé de 6 couleurs. . 15 I.6 Schéma récapitulatif.. . . . . . . . . . . . . . . . . . . . . . 17 II.1 Une solution localement maximale. . . . . . . . . . . . . . . 23 II.2 Une carte de coordonnée (1,0,2). . . . . . . . . . . . . . . . 23 II.3 Une représentation géométrique des cartes. . . . . . . . . .. 24 II.4 Représentation par recouvrement. . . . . . . . . . . . . . . . 24 II.5Prec?Pcb. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 II.6Pcb?Prec. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 II.7 Bijection entre les solutions. . . . . . . . . . . . . . . . . . . 26 II.8 Une conception sur la chasse à la bête. . . . . . . . . . . . . 30 II.9 Carré de côté 2. . . . . . . . . . . . . . . . . . . . . . . . . 32 II.10 Carré de côté 3. . . . . . . . . . . . . . . . . . . . . . . . . 32 II.11 Un jardin. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 III.1 Une solution admissible . . . . . . . . . . . . . . . . . . . . 40 III.2 Stratégie de vérification. . . . . . . . . . . . . . . . . . . . . 40 III.3 Une solution admissible. . . . . . . . . . . . . . . . . . . . . 41 III.4 Technique de maximalisation. . . . . . . . . . . . . . . . . . 41 III.5 Une solution admissible de cardinal 12. . . . . . . . . . . . .42 III.6 Meilleure configuration obtenue avec la stratégie ligne. . . . . 42 III.7 Les diagonales. . . . . . . . . . . . . . . . . . . . . . . . . . 43 III.8 Les diagonales coins. . . . . . . . . . . . . . . . . . . . . . . 44 III.9 Une solution générale. . . . . . . . . . . . . . . . . . . . . . 44 III.10 Bande de 2 avec 2 colonnes. . . . . . . . . . . . . . . . . . . 47 III.11 Bande de 2 avec 4 colonnes. . . . . . . . . . . . . . . . . . . 47 III.12 Bande de 2 avec 5 colonnes. . . . . . . . . . . . . . . . . . . 48 III.13 Bande de 2 avec 7 colonnes. . . . . . . . . . . . . . . . . . . 48 III.14 Cas à résoudre.. . . . . . . . . . . . . . . . . . . . . . . . . 48 III.15 En utilisant le résultat de la bande à 7. . . . . . . . . . . . .49 III.16 Cas à résoudre.. . . . . . . . . . . . . . . . . . . . . . . . . 49 v vi TABLE DES FIGURESIII.17 En utilisant le résultat de la bande à 8. . . . . . . . . . . . .49 III.18 Cas 1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 III.19 Cas 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 III.20 Une solution avec un cercle extérieur composé de 4 couleurs. . 54 III.21 Une solution avec un cercle extérieur composé de 6 couleurs. . 55 III.22 Teste de la technique. . . . . . . . . . . . . . . . . . . . . . 55 III.23x0etxkdoivent faire face à la même séquence de couleur. . . 56 III.24 Première étape.. . . . . . . . . . . . . . . . . . . . . . . . . 57 III.25 Seconde étape. . . . . . . . . . . . . . . . . . . . . . . . . . 57 III.26 Résultat final. . . . . . . . . . . . . . . . . . . . . . . . . . 57 III.27 Une solution où les couleurs internes ne sont pas diamétrale- ment opposées. . . . . . . . . . . . . . . . . . . . . . . . . . 58 III.28 Représentation générale. . . . . . . . . . . . . . . . . . . . . 58 III.29 Les 3 configurations possibles pour la ligne de longueur 2. . . 61 III.30 Une grille 4-connexes ne vérifiant pas la conditionH.. . . . . 63 III.31 Un contre-exemple.. . . . . . . . . . . . . . . . . . . . . . . 63 V.1 Schéma de la phase pré-conjecture deDahan. . . . . . . . . 74 V.2 Schéma de la phase post-conjecture deDahan. . . . . . . . . 74 VI.1 Un exercice de type B. . . . . . . . . . . . . . . . . . . . . . 85 VI.2 Un exercice de type C. . . . . . . . . . . . . . . . . . . . . . 86 VI.3 Exercice du type A. . . . . . . . . . . . . . . . . . . . . . . 88 VI.4 Un exercice qui commence par des observations. . . . . . . .90 VI.5 Comment se servir de sa calculatrice. . . . . . . . . . . . . . 91 VI.6 Un autre exercice de type A . . . . . . . . . . . . . . . . . . 92 VI.7 Un exercice du type B.. . . . . . . . . . . . . . . . . . . . . 93 VI.8 Un exercice du type A.. . . . . . . . . . . . . . . . . . . . . 94 VI.9 Un exercice du type C.. . . . . . . . . . . . . . . . . . . . . 95 VI.10 Un exercice du type A.. . . . . . . . . . . . . . . . . . . . . 95 VI.11 Un autre exercice sur de type A.. . . . . . . . . . . . . . . . 96 VI.12 Un exercice de type B . . . . . . . . . . . . . . . . . . . . . 96 VI.13 La transformation du carréABCD. . . . . . . . . . . . . . . 97 VI.14 Le point fixe Ω par lequel les droites se coupent. . . . . . .. 97 VI.15 Une correction de l"exercice de la figure VI.12. . . . . . .. . 98 VI.16 Un exercice de type C . . . . . . . . . . . . . . . . . . . . . 99 VII.1 Un (3;4)-jeu : un ensemble de cartes composées de 3 lignes remplies avec 4 couleurs. . . . . . . . . . . . . . . . . . . . . 105 VII.2 Une ligne unicolore. . . . . . . . . . . . . . . . . . . . . . . 106 VII.3 Une ligne multicolore stricte . . . . . . . . . . . . . . . . . . 106 VII.4 Un 4-set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 VII.5 Un (3;4)-jeu de 8 cartes contenant un 3-set . . . . . . . . . .106 VII.6 Un (3;4)-jeu de 6 cartes ne contenant pas de 3-set. . . . .. . 106 VII.7 Un exemple de duplication d"un (5,3)-jeu . . . . . . . . . . . 107

TABLE DES FIGURES vii

VII.8 Un (3;3)-jeu de cardinal 8 sans 3-set auquel il n"est pas pos- sible de rajouter une carte sans créer un 3-set. . . . . . . . . 107 VII.9 Un (3;3)-jeu de cardinal 9 sans 3-set. . . . . . . . . . . . . . 108 VII.10 Méthode de constructionS12.. . . . . . . . . . . . . . . . . . 109 X.1 Exemples de territoires. . . . . . . . . . . . . . . . . . . . . 131 X.2 Exemples de frontières.. . . . . . . . . . . . . . . . . . . . . 131 X.3 Exemples de séparation d"un territoire. . . . . . . . . . . . . 132 X.4 Territoire vierge. . . . . . . . . . . . . . . . . . . . . . . . . 132 X.5 Frontière à trouver.. . . . . . . . . . . . . . . . . . . . . . . 132 X.6 Exemple de 3-subdivion d"un segment de longueur 11. . . . .140 X.7 Exemples de parties ou le chercheur utilise l"algorithme 2 points et pas de 3. . . . . . . . . . . . . . . . . . . . . . . . 141 X.8 La couleur des coins de ce rectangle n"impose pas une unique direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 X.9 Algorithme qui termine en 3 interrogations . . . . . . . . . . 147 X.10 Algorithme optimal à chacune de ses étapes. . . . . . . . . . 147 X.11 Différences entre 3 points bleus et 2 points bleus avec unpoint rouge.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 X.12 Contre-exemple à l"idée du contrôle de zone . . . . . . . . . .150 X.13 Un algorithme qui maximise le nombre de points inconnus.. . 150 X.14 Un algorithme qui termine plus vite.. . . . . . . . . . . . . . 150 X.15 Les deux types de segments possibles. . . . . . . . . . . . . . 151 X.16 Différences entre les " milieux ».. . . . . . . . . . . . . . . . 151 X.17 Les différents types de segments possibles.. . . . . . . . . .. 153 X.18 Cas possibles lorsque 2 points sont rouge et bleu. . . . . .. . 156 X.19 Triangles à enlever.. . . . . . . . . . . . . . . . . . . . . . . 156 X.20 Triangle isocèle de hauteur 3. . . . . . . . . . . . . . . . . . 157 X.21 Triangle rectangle isocèle de côté 4 . . . . . . . . . . . . . . 157 X.22 Le nombre de frontières restantes ne dépend que de la position relative.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 X.23 Les bottes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 X.24 Une botte de dimension 9×4. . . . . . . . . . . . . . . . . . 165 X.25 Nombre de frontières dans les bottes. . . . . . . . . . . . . . 165 X.26 Idée de la preuve. . . . . . . . . . . . . . . . . . . . . . . . 166 X.27 Carré de côté 13 . . . . . . . . . . . . . . . . . . . . . . . . 167 X.28 Equivalence entre un unique type de frontières adjacentes et un segment. . . . . . . . . . . . . . . . . . . . . . . . . . . 167 X.29 Lorsque les points sont bleus. . . . . . . . . . . . . . . . . . 168 X.30 Chemin reliantX1etX2. . . . . . . . . . . . . . . . . . . . 169 X.31 Algorithme trouvant la " coupure ». . . . . . . . . . . . . . . 169 X.32 Chemin reliantX1àX3. . . . . . . . . . . . . . . . . . . . . 169 X.33 Algorithme trouvant la " coupure ». . . . . . . . . . . . . . . 169 X.34 Chemin reliantX3àX4. . . . . . . . . . . . . . . . . . . . . 170 X.35 Algorithme trouvant la frontière.. . . . . . . . . . . . . . . . 170

viii TABLE DES FIGURESX.36 Cas où il faut jouer sur le " bon » milieu. . . . . . . . . . . . 171X.37 Les milieux possibles en considérant que le segment estde

longueur 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 X.38 Les milieux possibles en considérant que le segment estde longueur 5 + 1 . . . . . . . . . . . . . . . . . . . . . . . . . 171 X.39 Un exemple de jeu utilisant l"algorithme dichotomique. . . . . 172 X.40 Cas 1b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 X.41 Cas 2c et 3.. . . . . . . . . . . . . . . . . . . . . . . . . . . 174 X.42 Cas 2b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 X.43 Frontière vide. . . . . . . . . . . . . . . . . . . . . . . . . . 174 X.44 Frontière diagonale. . . . . . . . . . . . . . . . . . . . . . . 174 X.45 Longeur et largeur du rectangle. . . . . . . . . . . . . . . . . 175 X.46 Frontières possibles. . . . . . . . . . . . . . . . . . . . . . . 178 X.47 Points de plus haute densité.. . . . . . . . . . . . . . . . . . 179 X.48 Sans donner de préférence aux coins. . . . . . . . . . . . . . 179 X.49 Droite qui permet de diviser un rectangle en sous-rectangle. . 180 X.50 Découpage en quatres rectangles. . . . . . . . . . . . . . . . 181 X.51 Cas 2b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 X.52 Cas 2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 X.53 3 coins bleus et un coin rouge. . . . . . . . . . . . . . . . . . 186 X.54 Un autre cas à prendre en compte.. . . . . . . . . . . . . . . 186 X.55 Les différents cas auxquels est confronté l"algorithmetout le temps bleu.. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 X.56 Les cas où il est préférable d"utiliser l"algorithme des milieux . 187 X.57 Deuxième " faille ». . . . . . . . . . . . . . . . . . . . . . . 187 X.58 Noir, c"est mieux. . . . . . . . . . . . . . . . . . . . . . . . 188 X.59 La situation. . . . . . . . . . . . . . . . . . . . . . . . . . . 189 X.60 Si A est bleu.. . . . . . . . . . . . . . . . . . . . . . . . . . 189 X.61 Si A est rouge. . . . . . . . . . . . . . . . . . . . . . . . . . 189 X.62 Si A est noir. . . . . . . . . . . . . . . . . . . . . . . . . . . 189 X.63 Evidence visuelle. . . . . . . . . . . . . . . . . . . . . . . . 189 X.64 Contre-exemple. . . . . . . . . . . . . . . . . . . . . . . . . 190 X.65 La situation. . . . . . . . . . . . . . . . . . . . . . . . . . . 191 X.66 Si A est bleu.. . . . . . . . . . . . . . . . . . . . . . . . . . 191 X.67 Si A est rouge. . . . . . . . . . . . . . . . . . . . . . . . . . 191 X.68 Si A est noir. . . . . . . . . . . . . . . . . . . . . . . . . . . 191 X.69 Les stratégies ne sont pas équivalentes. . . . . . . . . . . . .192 X.70 SiX2est rouge. . . . . . . . . . . . . . . . . . . . . . . . . 193 X.71 SiX2est bleu. . . . . . . . . . . . . . . . . . . . . . . . . . 193 X.72 Schéma d"une conception dePchercheur. . . . . . . . . . . . . 197 X.73 Schéma d"une conception dePdonneur. . . . . . . . . . . . . . 198 XI.1 Une représentation de la définition. . . . . . . . . . . . . . . 217 XII.1 Les exemples que nous avons présentés . . . . . . . . . . . . 239 XII.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

TABLE DES FIGURES ix

XII.3 Réponse des élèves du groupe 1 à la question 1 . . . . . . . . 243 XII.4 Réponse des élèves du groupe 1 aux questions 2 et 3 . . . . .244 XII.5 Ce qu"a écrit un élève . . . . . . . . . . . . . . . . . . . . . 245 XII.6 Ce qu"a écrit l"autre élève . . . . . . . . . . . . . . . . . . . 246 XII.7 Partie jouée entre l"observateur et les élèves. . . . . .. . . . 247 XII.8 Premier exemple.. . . . . . . . . . . . . . . . . . . . . . . . 254 XII.9 Exemple de territoire. . . . . . . . . . . . . . . . . . . . . . 255 XII.10 Exemple de territoire avec deux coins.. . . . . . . . . . . .. 255 XII.11 Début de stratégie du groupe 2. . . . . . . . . . . . . . . . . 264 XII.12 Réponses d"un des élèves. . . . . . . . . . . . . . . . . . . . 265 XII.13 Réponses d"un autre élève. . . . . . . . . . . . . . . . . . . . 265 XII.14 Un essai avec une nouvelle stratégie.. . . . . . . . . . . . .. 266 XII.15 Une partie jouée. . . . . . . . . . . . . . . . . . . . . . . . . 268 XII.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 XII.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 XII.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 XII.19 Un contre-exemple non identifié par les élèves. . . . . .. . . 272 XII.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 XII.21 Production d"un élève du groupe 3. . . . . . . . . . . . . . . 278 XII.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 XII.23 Dessin du gestionnaire au tableau.. . . . . . . . . . . . . . .280 XII.24 Technique utilisée par un élève du groupe 1.. . . . . . . .. . 282 XII.25 Technique utilisée par un autre élève du groupe 1. . . .. . . 282 XII.26 Case grisée correspondant au milieu.. . . . . . . . . . . . .. 285 XIII.1 Schéma récapitulatif de la démarche expérimentale.. . . . . . 289 XIII.2 Un contre-exemple non identifié par les élèves. . . . . .. . . 297 XIII.3 Configuration introduite par le gestionnaire.. . . . .. . . . . 297 XIII.4 Technique du premier élève. . . . . . . . . . . . . . . . . . . 298 XIII.5 Technique du second élève.. . . . . . . . . . . . . . . . . . . 298 XIII.6 Justification d"un élève du groupe 2.. . . . . . . . . . . . . .300 XIII.7 Les coins d"un carré 7×7. . . . . . . . . . . . . . . . . . . . 308 XIII.8 L"espace problème du groupe 1 . . . . . . . . . . . . . . . . 311 XIII.9 Espace problème du groupe 2 . . . . . . . . . . . . . . . . . 314 XIV.1 a ou b?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 XIV.2 Explication pour le gestionnaire.. . . . . . . . . . . . . . . .320 XIV.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 XIV.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 A.1 Découpage lorsquem >1 . . . . . . . . . . . . . . . . . . . 366 A.2 Découpage lorsquem= 1 . . . . . . . . . . . . . . . . . . . 367 A.3 Découpage en 3 zones . . . . . . . . . . . . . . . . . . . . . 368 A.4 Un ensemble de 5 points générateur minimal . . . . . . . . . 370 A.5 Un ensemble de 4 points générateur minimal . . . . . . . . . 370 A.6 Deux ensembles de points extrémaux d"un mêmeD8-convexe. 370

x TABLE DES FIGURESA.7 Droites d"appui d"un rectangle . . . . . . . . . . . . . . . . . 371A.8 Zoom sur un coin. . . . . . . . . . . . . . . . . . . . . . . . 372A.9 Formes desD8-convexes non segments. . . . . . . . . . . . . 373

A.10 Ensembles générateurs . . . . . . . . . . . . . . . . . . . . . 374 B.1 Exemple d"un convexe où 2 droites différentes engendrentla même frontière.. . . . . . . . . . . . . . . . . . . . . . . . . 376 B.2 Deux droites qui intersectent un convexe en un même point mais qui ne sont pas équivalentes. . . . . . . . . . . . . . . . 376 B.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 B.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 B.5 1 ercoup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 B.6 2 ecoup.D0. . . . . . . . . . . . . . . . . . . . . . . . . . . 385 B.7 3 ecoup.D0. . . . . . . . . . . . . . . . . . . . . . . . . . . 385 B.8 4 ecoup.D1. . . . . . . . . . . . . . . . . . . . . . . . . . . 385 B.9 Impossibilité d"une dichotomie " parfaite » . . . . . . . . . .386 B.10 Convexe engendré par 2 points. . . . . . . . . . . . . . . . . 388

B.11 1

ercoup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

B.12 2

ecoup.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

B.13 3

ecoup.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

B.14 4

ecoup.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 B.15 Frontière point sur un segment vertical . . . . . . . . . . . . 397 B.16 Frontières possibles. . . . . . . . . . . . . . . . . . . . . . . 397 B.17 Frontières en fonction de la couleur du point horizontalement adjacent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 B.18 Trace point sur un segment diagonal. . . . . . . . . . . . . . 398 B.19 Frontières possibles. . . . . . . . . . . . . . . . . . . . . . . 398 B.20 Frontières en fonction de la couleur du point diagonalement adjacent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Introduction

Une première motivation.De nombreux mathématiciens mettent en avant le caractère expérimental des mathématiques, nous pouvons citerAr- nold(1998), pour qui les mathématiques sont " la partie de la physique où les expérience ne coûtent pas cher »,Perrin(2007) ou encorePolya (1990). Pourtant, il est quasiment certain que pour presquetoute la popu- lation, les mathématiques sont dénuées d"expérimental

1, les mathématiques

ce n"est pas de la physique et encore moins de la biologie! Il est vrai que lorsqu"on parle de sciences, les mathématiques sont exclues de celles dîtes " expérimentales ». En mathématiques, nous ne manipulons pas de tubes à essais, d"oscilloscopes ou encore de scalpels! Pourtant, récemment, il s"est développé une nouvelle branche des mathé- matiques,les mathématiques expérimentales, dans laquelle, selonBorwein etBailey(2008), les chercheurs utilisent les outils informatiquescomme un " laboratoire ». Par exemple, ils les utilisent pour analyser des exemples ou tester une nouvelle idée. On pourrait alors en conclure que les mathé- matiques sont devenues expérimentales avec l"arrivée d"ordinateurs et de logiciels avancés. Cela n"est pas notre point de vue, nous pensons que carac- tère expérimental d"une science n"est pas seulement lié à l"utilisation d"outils " extérieurs » mais s"inscrit dans un processus de résolution de problèmes dans lequel expérimenter est en intéraction avec d"autres actions comme proposer de nouveaux problèmes, vérifier une hypothèse/conjecture...De ce fait, selon nous, d"une part le caractère expérimental des mathématiques a toujours été présent et d"autre part, expérimenter en mathématiques ne né- cessite pas d"utiliser des outils complexes, une feuille etun crayon peuvent par exemple suffire. Notre motivation première à l"étude de la " démarche expérimentale en mathématiques » est que nous considérons que c"est un processus utile à la résolution de problèmes mathématiques. En ce sens, nous pouvons voir la "démarche expérimentale en mathématiques » comme l"aspectexpérimental de l"activité de recherche en mathématiques. Une seconde motivation.Nos motivations ne sont pas seulementquotesdbs_dbs5.pdfusesText_9
[PDF] étude exploratoire qualitative

[PDF] etude faisabilité d un projet avicole

[PDF] etude gallup 2016

[PDF] etude gallup 2017

[PDF] étude gallup motivation

[PDF] etude greenflex 2017

[PDF] étude histoire de la mode

[PDF] étude longitudinale transversale

[PDF] étude marketing samsung

[PDF] etude medecine specialisation

[PDF] etude motivation au travail

[PDF] étude multicentrique

[PDF] etude musicologie belgique

[PDF] étude nutella

[PDF] etude physique de la guinée