[PDF] Exercices dOptique loupe constituée par une


Exercices dOptique


Previous PDF Next PDF



Exercices de la séquence n°10 - La vision : modèles de lœil et de la

La loupe est placée à 8 cm du texte. •. •. On observe une image rétrécie renversée



Exercice pour sentraîner Étude dune loupe Exercice pour sentraîner Étude dune loupe

Page 1. Exercice pour s'entraîner. Étude d'une loupe. 1. Page 2. Solution. 2.



DS sur le chap DS sur le chap

Correction exercice 1 : La loupe de l'enquêteur. (4 pts). Un enquêteur utilise une loupe qui n'est rien d'autre qu'une lentille convergente de centre O et de 



DS sur le chap

Correction exercice 1 : La loupe de l'enquêteur. (4 pts). Un enquêteur utilise une loupe qui n'est rien d'autre qu'une lentille convergente de centre O et de 



Corrections des exercices - AlloSchool

Exercice 3 : Soit deux lentilles 1 et 2 de vergences respectives 20 δ et 50 δ. Calculer la distance focale de lentille 1. Calculer 



Exercice 1 : Principe dune loupe Exercice 2 : Étude de lœil

Correction fiche d'exercices : Construction d'images optiques. 2008-2009. Exercice 1 : Principe d'une loupe. 1- Angle Ө sous lequel l'objet est vu : On a tan 



Activité pédagogique - Secondaire : La démocratie sous la loupe

Compétence 2e cycle : Consolider l'exercice de sa citoyenneté à l'aide de l'histoire. Page 2. 2. Se préparer au vote. La démocratie sous la loupe. TOUS LES 



EXERCICES

corrigés dans le manuel. - 3 5



libcours

DS n°1 - corrigé. Classe : 1S la La distance objectif-pellicule est donc égale à la distance focale de l'objectif. Exercice 4 : La loupe de l'enquêteur.



Exercices de la séquence n°10 - La vision : modèles de lœil et de la

La vision : modèles de l'œil et de la loupe. Pour prendre un bon départ… Les exercices de la collection Image reprennent tous les prérequis utiles au 



DS sur le chap

Exercice 1 : La loupe de l'enquêteur. (4 pts). Un enquêteur utilise une loupe qui n'est rien d'autre qu'une lentille convergente de centre O et de vergence.



Exercice Optique G4-03

Exercice G4-03 : grossissement commercial d'une loupe. Par définition le diamètre apparent d'un objet est l'angle sous lequel on le voit.



? ? ?

CORRECTION EXERCICES DE REVISION : OPTIQUE GEOMETRIQUE le foyer objet de la lentille convergente constituant la loupe F. Il doit donc se trouver entre 0 ...



Exercice 1 : Principe dune loupe Exercice 2 : Étude de lœil

Correction fiche d'exercices : Construction d'images optiques. 2008-2009. Exercice 1 : Principe d'une loupe. 1- Angle ? sous lequel l'objet est vu :.



Exercices dOptique

Cette image est agrandie par l'oculaire assimilé à une lentille mince L2



EXERCICES

Exercice 10. Exercice 11 Exercice. Énoncé. D'après Belin 2019. Choisir la ou les bonnes réponses ... On observe une partition à travers une loupe.



ŒIL LOUPE ET LUNETTE

La lentille correctrice n'est pas sphérique. Exercice d'application : Œil myope. Un œil myope a son PR situé à 17 cm et son PP à 12 



libcours

Exercice 2 : Où est la lentille et quelles sont ses caractéristiques ? le détail d'une empreinte digitale de taille 10 mm placé à 10 cm de la loupe.



Corrections des exercices - AlloSchool

Exercice 1 : EXERCICES D'APPLICATION : ... Caractéristiques de l'image A'B' (les caractéristiques de l'mage donné par la loupe) :.



Exercice 1 : La loupe de l’enquêteur (4 pts) Exercice 2

Exercice 1 : La loupe de l’enquêteur (4 pts) Un en uêteu utilise une loupe ui n’est ien d’aute u’une lentille convegente de cente O et de vergence = 50 ? (diopties) L’enuêteu obseve le détail d’une empeinte digitale de taille 10 mm et placée à 10 cm de la loupe a



La vision : modèles de l’œil et de la loupe

EXERCICE 3 : observations à la loupe On dispose d’une loupe dont la distane foale vaut 8m On souhaite lie un texte à taves cette loupe Relier chacune des situations poposées à l’affimation juste onenant e ue l’on o seve en plaçant son œil deièe la loupe • Auune image n’est o sevale La loupe est placée à 5 cm du texte

Comment fonctionne une loupe ?

Une loupe fonctionne sur le principe de la lentille convexe (un système convergent simple) : une image virtuelle agrandie d'un objet est créée en avant de la lentille. Pour cela, la distance entre la lentille et l'objet doit être plus courte que la distance focale de la lentille.

Comment choisir une loupe de lecture ?

Parmi la large sélection de loupes de lecture proposées, choisissez celle qui s’adapte le mieux à votre style : monture à armature complète et épaisse, demi-armature, ou verres libres montés sur branches légères et flexibles, pour plus de transparence.

Quelle est la distance de mise au point d’une loupe?

La distance ARAP est appelée latitude de mise au point. La région de l’espace objet située entre AR et AP, permettant l’observation d’images nettes, est appelée profondeur de champ de la loupe. 3. EN PRATIQUE… Une lentille mince convergente de distance focale image f ' = 5 cm est utilisée comme loupe.

Quelle est la puissance de la loupe?

AB : taille de l’objet (m). P : puissance de la loupe (dioptries, ?). Puissance intrinsèque Pi : Lorsque l’image A'B' est à l’infini, la puissance est dite intrinsèque. D’après les schémas précédents et compte-tenu des conditions de Gauss :

Exercices d"Optique

" (...) que mon corps est le prisme inaperçu, mais vécu, qui réfracte le monde aperçu vers mon "Je». Ce double mouvement de conscience,à la fois centrifuge et centripète, qui me relie au monde, transforme celui-ci par là même, lui donne une détermination, une qualification nouvelle. » EdmondBarbotin-Humanité de l"hommeAubier, p. 48 (1970) ?Lois de Snell-Descartes O1? ???Ex-O1.1Mise en jambes

1)Refaire le sch´ema ci-contre en ne

laissant que les rayons lumineux existant r´eellement.

2)Donner toutes les relations angulaires

possibles en pr´ecisant pour chacune si elle est d"origine g´eom´etrique ou optique. ???Ex-O1.2La loi de la r´efraction

Un rayon lumineux dans l"air tombe sur la

surface d"un liquide; il fait un angleα= 56
◦avec le plan horizontal.

La d´eviation entre le rayon incident et le rayon r´efract´eestθ= 13,5◦. Quel est l"indicendu

liquide?

R´ep. :n= 1,6.

???Ex-O1.3Constructions de Descartes et de Huygens Montrer que les deux constructions suivantes permettent de tracer le rayon r´efract´e.

1) Construction de Descartes:

◦tracer les cercles de rayonsn1etn2; ◦soitMl"intersection du rayon incident avec le cercle de rayon n 1; ◦soitPl"intersection du cercle de rayonn2et de la droite orthogonale `a la surface de s´eparation passant parM; ◦le rayon r´efract´e n"est autre queOP.

2) Construction de Huygens:

◦tracer les cercles de rayons 1/n1et 1/n2; ◦soitMl"intersection du rayon incident avec le cercle de rayon 1/n1; ◦tracer la tangente enMau cercle de rayon 1/n1; ◦soitIle point d"intersection de la tangente avec la surface de s´eparation; ◦soitPl"intersection du cercle de rayon 1/n2et de la se- conde tangente trac´ee; ◦le rayon r´efract´e n"est autre queOP. ???Ex-O1.4Dispersion par le verre

Le tableau ci-contre donne les longueurs d"onde,

dans le vide, de deux radiations monochroma- tiques et les indices correspondants pour deux types de verre diff´erents.

Couleurλ0(nm)n(crown)n(flint)

rouge656,31,5041,612 bleu486,11,5211,671

1)Calculer les fr´equences de ces ondes lumineuses. D´ependent-elles de l"indice du milieu?

On prendrac0= 2,998.108m.s-1.

Exercices d"Optique2008-2009

2)Calculer les c´el´erit´es et les longueurs d"onde de la radiation rouge dans les deux verres.

3)a) Un rayon de lumi`ere blanche arrive sur un dioptre plan air-verre,

sous l"incidencei= 60◦. L"indice de l"air est pris ´egal `a 1,000. Rappeler les lois deDescartesrelatives `a la r´efraction de la lumi`ere. b) Calculer l"angle que fait le rayon bleu avec le rayon rougepour un verre crown, puis pour un verre flint. Faire une figure. c) Quel est le verre le plus dispersif? i r R rB ???Ex-O1.5Relation entre l"indice et la longueur d"onde

On mesure l"indice d"un verre pour

diff´erentes longueurs d"onde (dans le vide) :

λ(nm)400500600700800

n(λ)1,5001,4891,4821,4791,476 On veut d´eterminer les coefficientsAetBde la relation deCauchy:n(λ) =A+Bλ2.

1)D´eterminer les unit´es deAet deB.

2)Expliquer pourquoi il ne faut pas ´etudiernen fonction deλ, maisnen fonction de1

λ2.

3) `A l"aide d"une calculatrice, d´eterminerAetBpar r´egression lin´eaire.

4)En d´eduirenpourλ= 633nm.

???Ex-O1.6Courbure d"une fibre optique Une fibre optique est constitu´e d"une ˆame en verre d"indicen1= 1,66 et de diam`etred= 0,05mmentour´ee d"une gaine en verre d"indicen2= 1,52. On courbe la fibre ´eclair´ee sous incidence normale. Quel est est le rayon de courbureRminimal pour lequel toute la lumi`ere incidente traverse la fibre?

R´ep :Il fautR >d

2.n1+n2n1-n2

???Ex-O1.7Flotteur Un disque en li`ege de rayonrflotte sur l"eau d"indicen; il soutient une tige plac´ee perpendiculairement en son centre. Quelle estla longueur hde la partie de la tige non visible pour un observateur dans l"air?

Citer les ph´enom`enes mis en jeu.

R´ep. :h=r⎷

n2-1. ???Ex-O1.8Le point de vue du poisson Un poisson est pos´e sur le fond d"un lac : il regarde vers le haut et voit `a la surface de l"eau (d"indicen= 1,33) un disque lumineux de rayonr, centr´e `a sa verticale, dans lequel il aper¸coit tout ce qui est au-dessus de l"eau.

1)Expliquer cette observation.

2)Le rayon du disque estr= 3,0m.`A quelle profondeur se trouve le poisson?

R´ep. :h= 2,6m.

???Ex-O1.9Lame `a faces parall`eles

On consid`ere une lame `a faces parall`eles en verre (indicen) plong´ee dans l"air. Elle peut ˆetre

consid´er´ee comme l"association de deux dioptres plans parall`eles. Il y a donc stigmatisme approch´e dans les conditions deGauss(Cf. le¸con suivante).

1)Faire une figure montrant qu"un rayon d"incidenceia subi `a sa sortie un simple d´eplacement

d"une distanced=e.sin(i-r) cosr(rest l"angle de r´efraction `a la premi`ere r´efraction;eest l"´epaisseur de la lame).

2)Montrer que la position de l"image est telle queAA?=e(1-1

n) et que ce d´eplacement appa- rent a lieu dans le sens de la lumi`ere. CalculerAA?pour une vitre d"´epaisseur 1mm. Conclusion?

2http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"Optique

???Ex-O1.10Indice d"un liquide

Une cuve en verre a la forme d"un prisme de

section droite rectangle isoc`ele. Elle est pos´ee horizontalement sur une des arˆetes de longueur ldu triangle isoc`ele, et le sommet oppos´e `a ce cˆot´e est ouvert pour permettre de remplir la cuve d"un liquide transparent d"indicen. Un pinceau de lumi`ere est envoy´e horizontale- ment sur la face verticale de la cuve, dans un plan de section droite, `a la hauteurl 2.

Ce rayon ´emerge au-del`a de l"hypoth´enuse et rencontre en un pointPun ´ecranEplac´e vertica-

lement `a la distancelde la face d"entr´ee du dispositif. On n´eglige l"effet dˆu aux parois en verre

sur la propagation du pinceau de lumi`ere.

1)Quelle limite sup´erieure peut-on donner `a la valeur de l"indice?

2)Quel est l"indicendu liquide contenu dans la cuve en fonction delet dez?

3)A.N. : calculernavec :l= 30cmetz= 6,7cm.

2 sin?

i+ arctan?l-2zl?? ;3)n= 1,36 (´ethanol peut-ˆetre). ???Ex-O1.11Deux prismes accol´es Deux morceaux de verre taill´es sous forme de tri- angles rectangles et isoc`eles d"indices respectifsNetn ont leur faceABcommune. Un rayon incident frappe ADsous une incidence normale, se r´efracte enI1, se r´efl´echit enI2puis ressort enI3sous l"incidencei. Les valeurs deNetnsont telles que la r´eflexion soit totale enI2.

1)´Ecrire la relation deSnell-Descartesaux pointsI1etI3.

2)Quelles relations v´erifient les anglesretα;αetβ?

3)Quelle relation v´erifientNetnpour que la r´eflexion soit limite enI2?

CalculerN,r,α,βetipourn=3

2quand cette condition limite est r´ealis´ee.

On appelleN0cette valeur limite deN. Pour que la r´eflexion soit totale enI2,Ndoit-il ˆetre plus grand ou plus petit queN0?

4)´Ecrire la relation v´erifi´ee parNetnpour que l"angleisoit nul. Que vautN?

Solution Ex-O1.4

1)νR= 4,568.1014Hz,νB= 6,167.1014Hz.

Les fr´equences ne d´ependent pas du milieu.

2)c=c0

n, et donc :λ=cν=c0ν1n=λ0n. •Dans le verre de crown : c

R= 1,993.108m.s-1

etλR= 436,3nm. •Dans le verre de flint : c

R= 1,86.108m.s-1

etλR= 407,1nm.

3)a) Le rayon r´efract´e est dans le plan d"in-

cidence etnsini=n?sinr. b)•Pour le verre de crown : r

R= 35,16◦etrB= 34,71◦: le rayon bleu

est plus d´evi´e que le rayon rouge. L"angle entre le rayon rouge et le rayon bleu vaut

Δr= 0,45◦

•Pour le verre de flint : r

R= 32,50◦etrB= 31,22◦: le rayon bleu

est plus d´evi´e que le rayon rouge. L"angle entre le rayon rouge et le rayon bleu vaut

Δr= 1,28◦

c)→Le" flint » est un verre plus dispersif que le " crown » car l"angle entre les deux rayons est le plus important. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/3

Exercices d"Optique2008-2009

Solution Ex-O1.5

1)nn"a pas d"unit´e, doncAn"a pas d"unit´e

etBa la mˆeme unit´e queλ2,i.ele m`etre carr´e (m2).

2)n(λ) n"est pas une fonction affine, en

revanchen?1

λ2?est une fonction affine d"or-

donn´ee `a l"origineAet de coefficient directeur B.

3)A= 1,468

etB= 5,2.10-15m2.

4)n(633nm) = 1,468 +5,2.10-15

(633.10-9)2 soitn= 1,481

Solution Ex-O1.8

1)Par application du principe du retour in-

verse de la lumi`ere, l"oeil du poisson voit la zone de l"espace d"o`u il peut ˆetre vu.

Le poisson voit donc tout l"espace situ´e dans

l"air au travers d"un cˆone de sommet son oeil et de demi-angle au sommet ´egal `a l"angle li- mite de r´efraction pour le dioptre Eau/Air. En dehors de ce cˆone, il y a r´eflexion totale.2)il= arcsinnairneau= arcsin11,33≈49◦, le poisson voit donc l"espace situ´e au-del`a de la surface de l"eau sous un cˆone d"angle 98 dont l"intersection avec la surface de l"eau est un disque de rayonr.

Avec tanil=r

h, on ah=rtanil= 2,6m.

Solution Ex-O1.10

1)EnI, l"incidence ´etant normale, le rayon

incident n"est pas d´evi´e.

Par contre, enJ, l"angle d"incidence esti=

45
◦. Or l"´enonc´e dit que le rayon est transmis sini=⎷2 = 1,414.

2)EnJon ansini= sinr,

donc :n=sinr sini=⎷2 sinr. On peut calculerr`a l"aide des donn´ees fournies par la tache lumineuse sur l"´ecranE.

Dans le triangleJKP,

tan(r-i) =KP JK=l 2-zl 2= l-2z l.

Ainsi,r=i+ arctan?l-2z

l? et donc : n=⎷

2 sin?

i+ arctan?l-2zl??

3)n= 1,36 (´ethanol peut-ˆetre).

Solution Ex-O1.11

1)EnI1:Nsin45◦=N⎷2

2=nsinr1?

et enI3,nsinβ= sini 2?.

2)La normale `aBCet la normale `aAB

sont perpendiculaires entre elles. dans le tri- angle form´e par ces normales etI1I2, on a : r+α=π 23?.

De plus, avec le triangleI2CI3, on ´etablit :

44?.

3)•La condition de r´eflexion (avec

ph´enom`ene de r´efraction) limite enI2s"´ecrit : nsinα= 15?

Grˆace `a1?et3?, la relation5?conduit `a :

N

2= 2(n2-1)

6?. •AN :N≡N0= 1,58r≡r0= 48,19◦ α=α0= 41,81◦β= 3,19◦i= 4,79◦ •Pour que la r´eflexion soit totale enI2, il faut que l"angleαsoit plus grand que l"angle d"in- cidence pour la r´efraction limiteα0que l"on vient de calculer (car alors la loi deDescartes pour la r´efractrion n"est plus v´erifi´ee :5?de- vientnsinα >1).

Alors3??r < r0, et donc1??N < N0

ce qui revient `a direN 2(n2-1).

4)Siiest nul, alorsβest nul, soitα=r=π

4, et donc1??N=n, soit :N=n=3 2

4http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"Optique

DL no1 - La fibre optique

1. Att´enuation dans la fibre

Les pertes par transmission (not´eesX) sont exprim´ees en dB.km-1. On rappelle queXdB=

10 log

P2 P1, avecP1puissance optique`al"entr´ee de la fibre etP2puissance optique au bout d"un

kilom`etre de parcours. Vers 1970, l"att´enuation ´etait de 10dB.km-1. Actuellement, on arrive `a

0,005dB.km-1. Dans les deux cas, exprimer en % les pertes au bout d"un km.

2. Profil d"indice

Une fibre optique est g´en´eralement constitu´ee d"un coeur de rayon a dont l"indicenvarie avec la distancer`a l"axe, et d"une gaine d"indice constant n

2. On suppose que :

n2(r) =n21(1-2Δ.(ra)α) pourr < an2(r) =n22poura < r < b a bn(r) On 2 avecn2< n1,αconstante positive,brayon ext´erieur de la gaine et Δ =n21-n222n21.

Dans la pratique,n1etn2ont des valeurs tr`es voisines et Δ est tr`es petit, en g´en´eral Δ≈10-2.

→Repr´esentern=f(r) pourα= 1 ,α= 2 etαinfini.

3. Fibre `a saut d"indice

On envisage le cas d"une fibre `a saut d"indice (αinfini)1. a)Le plan d"incidence d"un rayonSIse propageant dans l"air et tombant sur la fibre est le plan du sch´ema ci-contre. →Montrer que siθireste inf´erieur `a un angleθa, un rayon peut

ˆetre guid´e dans le coeur.

On appelle ouverture num´erique (O.N.) la quantit´e sinθa. →Exprimer l"O.N. en fonction den1et Δ.

Application num´erique :

Calculer l"O.N. pour Δ = 10

-2etn1= 1,5. O I n=1air coeurgaine z r q i b)Une impulsion lumineuse arrive `at= 0 , au pointO(r= 0) sous la forme d"un faisceau

conique convergent, de demi-angle au sommetθi(θi< θa). Pour une fibre de longueurl, calculer

l"´elargissement temporel Δtde cette impulsion `a la sortie de la fibre.

Exprimer Δten fonction del,n1,cetθi.

A.N :Calculer Δtpourl= 10km,θi= 8◦etn1= 1,5. On prendrac= 3.108m.s-1.

c)Soit un faisceau conique convergent `a l"entr´ee d"une seconde fibre `a saut d"indice. Ce faisceau

a pour demi-angle au sommet l"angleθ?acorrespondant `a l"O.N. de la seconde fibre. →Exprimer Δt?en fonction del,n1,n2etc. Application num´erique :Calculer la nouvelle O.N. et Δt?pourl= 1km,n1= 1,456 etn2=

1,410 (fibre silice/silicone).

d)On envoie `a l"entr´ee de la fibre de la question pr´ec´edentedes impulsions tr`es br`eves de dur´ee

δTavec une p´eriodeT(on suppose queδT?T).

→Quelle est la valeur minimale deTpour que les impulsions soient s´epar´ees `a la sortie de la

fibre?

e)En transmission num´erique, on exprime le r´esultat en nombre maximum d"´el´ements binaires

(pr´esence ou absence d"impulsion = bit) qu"on peut transmettre par seconde. Que vaut le d´ebit

enb.s-1(bits par seconde) des fibres ´etudi´ees?

Les comparer aux standard t´el´ephone Num´eris (64kb/s), au standard t´el´evision (100Mb/s) ou

`a une ligne" ADSL » classique qui permet un transfert de512Mopar seconde (soit plus dequotesdbs_dbs44.pdfusesText_44
[PDF] qu'est ce qu'une loupe

[PDF] reproduction chez l'homme

[PDF] lunette astronomique afocale

[PDF] etude d'une lunette astronomique correction

[PDF] calcul grossissement microscope optique

[PDF] grossissement microscope rouge

[PDF] different grossissement microscope

[PDF] microscope optique grossissement maximal

[PDF] grossissement microscope bleu

[PDF] grossissement microscope électronique

[PDF] optique géométrique lentilles

[PDF] etapes de la reproduction d'une grenouille

[PDF] date reproduction grenouille

[PDF] grenouille reproduction sexuée

[PDF] reproduction grenouille rousse