[PDF] Computing Fourier Series and Power Spectrum with MATLAB





Previous PDF Next PDF



Computing Fourier Series and Power Spectrum with MATLAB

While MATLAB makes it easy to translate a signal from the time domain to the frequency domain one must understand how to interpret the data in the frequency 



Fast Fourier Transform and MATLAB Implementation

by using a tool called Fourier transform. • A Fourier transform converts a signal in the time domain to the frequency domain(spectrum).



Lab 5 Fourier Series

Matlab script with you to the lab). II. Example. The following code calculates the Fourier series of the following signal with Matlab.



Solution Manual for Additional Problems for SIGNALS AND

Chaparro-Akan — Signals and Systems using MATLAB. 4.4. 4.3 Let the Fourier series coefficients of a periodic signal x(t) of fundamental frequency ?0 =.



Fourier representation of signals (MATLAB tutorial)

19 févr. 2020 Notice: when the signal is periodic we talk about. Fourier series (FS). Page 14. Notations and abbreviations. Mathematical tools for frequency ...



ECEN 314: Matlab Project 1 Fourier Series Synthesizer

8 avr. 2013 zip”. 2 Exercises. 2.1 A Signal Generator Based on CT Fourier Series. In many signal processing applications it ...



Fourier Series Representation Of Periodic Signals & The

Using MATLAB plot the signal on the interval-2?n?(2N-1)-2.The DTFS can be computed by typing. X=(1/N)*fft(x).Plot the real and Imaginary parts of Fourier 



Fourier Series MATLAB GUI Documentation

The GUI allows the user to sum up to five sine waves using a Simulink model change their frequency



Simulation Of Pathological ECG Signal Using Transform Method

Keywords: ECG Signals; Fourier series; Heart Pathology An automatic system which involves MATLAB-based tool is being used to simulate synthetic.



Course Notes for Engineering 100 Music Signal Processing College

3 Fourier Series and Musical Signals. 17. 3.1 Overview . 3.2.2 Fourier Series of a Trumpet . ... gram in Matlab a music transcriber that accepts.

ComputingFourierSeriesandPower

SpectrumwithMATLAB

ByBrianD.Storey

1.Introduction

frequencyranges.

2.TheMathPart

timedomaintothefrequencydomain. f(t)=a0+1X n=1(ansin(2¼nt)+bncos(2¼nt))(2.1) T

EXPaper

2FourierSeries

end(i.ef(t=0)=f(t=1)). Z 1 0 Z 1 0 Z 1 0 Z 1 0 Z 1 0 oftheequationtheequalitywillhold. Z 1 0Ã f(t)=a0+1X n=0(ansin(2¼nt)+bncos(2¼nt))! sin(2¼mt)dt:(2.7)

2.7willreducetoZ1

0 f(t)sin(2¼nt)dt=an

2:(2.8)

toobtaintheanalogousresult: Z 1 0 f(t)cos(2¼nt)dt=bn

2:(2.9)

interval0FourierSeries3

3.Someexamples

result. 2Z 1 0 sin(2¼t)sin(2¼nt)dt=an:(3.1) 2 Z 1=2 0 sin(2¼nt)dt=an:(3.2)

¡2cos(2¼nt)

2¼n¯

¯1=2

0 =an(3.3) andevaluatingatt=0andt=1=2yields

1¡cos(¼nt)

¼n=an:(3.4)

Thereforewhennisodd,

a n=2

¼n(3.5)

andwhenniseven a n=0(3.6)

2sin(2¼nt)

2¼n¯

¯1=2

0 =bn(3.7) andevaluatingatt=0andt=1=2yields sin(¼nt)

¼n=bn;(3.8)

which,foralln,issimply b n=0(3.9)

4FourierSeries

00.10.20.30.40.50.60.70.80.91-0.2

0 0.2 0.4 0.6 0.8 1 1.2 time f(t) n=20 n=2,000 untilweincludemanypointsintotheseries. thetimeinterval a 0=Z 1=2 0 dt=1=2:(3.10) toconstructthesignalaccurately.

N=2000;

x=[0:100]/100; f=ones(1,101)*1/2; fori=1:2:N a=2/pi/i; f=f+a*sin(2*pi*i*x); end plot(x,f)

4.FourierTransformofDiscreteData

FourierSeries5

00.10.20.30.40.50.60.70.80.91-1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 time f(t)t1t2t3t4t5t6t7t 8A 1A2A3 A 4 A 5A6A 7 up. seeFigure2 A j=f(tj)+f(tj+1)

2(tj+1¡tj)(4.1)

¢t.Thereforethetotalareais

A=¢tµf(t1)+f(t2)

(4.2) whichgeneralizesto Z f(t)dt=¢t0 @f(t1)=2+f(tn)=2+N¡1X j=2f(tj)1

A(4.3)

a j=2sin(2¼ntj)f(tj)](4.4)

6FourierSeries

theintegralRx(N) datapoints. thesquarewave,equation3.5.

Fouriercoe±cientsvs.frequency.

5.TheFFT

FourierSeries7

whatthealgorithmhasgivenyouback. (a)DecipheringtheFFTData numbers(i=p bitaboutcomplexnumbers.

¡1.Acomplex

number,c,istypicallywritten c=a+bi(5.1) cc=(a+bi)(a+bi)=a2¡b2+2abi:(5.2)

¹c=(a¡bi):(5.3)

8FourierSeries

-1-0.8-0.6-0.4-0.200.20.40.60.81-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.3 + 0.5 i

-0.1 - 0.8 i real imaginary distanceofthenumberfromtheorigin.

Theabsolutevalueofcisgivenas

jcj=p c¹c=pa2+b2(5.4) numberfromtheorigin.

0.0000

-0.0000-4.0000i

0.0000-0.0000i

0.0000-0.0000i

0.0000

0.0000+0.0000i

0.0000+0.0000i

-0.0000+4.0000i

FourierSeries9

a n=¡1

2Nimag(cn);0 b n=1

2Nreal(cn);0 -0.0000 -0.0000+0.0000i

4.0000-0.0000i

0.0000+0.0000i

0.0000

0.0000-0.0000i

4.0000+0.0000i

-0.0000-0.0000i

Nowtrythefollowingcommands

>>t=[0:7]'/8; >>f=sin(2*pi*t); >>f=fft(f); >>f(1) small,butneverexactly0. >>t=[0:7]'/7; >>f=sin(2*pi*t);

10FourierSeries

>>f=fft(f)

Theresultshouldappearas

-0.00000000000000

1.36929808581104-3.30577800969654i

-0.62698016883135+0.62698016883135i -0.50153060757593+0.20774077960317i -0.48157461880753 -0.50153060757593-0.20774077960317i -0.62698016883135-0.62698016883135i

1.36929808581104+3.30577800969654i

properresultback.

6.PowerSpectrum

commands. >>N=8;%%numberofpoints >>t=[0:N-1]'/N;%%definetime >>f=sin(2*pi*t);%%definefunction tainedatafrequencyof1.

FourierSeries11

02468101214161820

10-15 10-10 10-5 100
frequency (Hz) power

N=10000;%%numberofpoints

T=3.4;%%definetimeofinterval,3.4seconds

t=[0:N-1]/N;%%definetime t=t*T;%%definetimeinseconds semilogy(freq,p);%%plotonsemilogscale axis([02001]);%%zoomin

TheresultofthesecommandsisshowninFigure4

microphoneandspeaker.

Fs=44100;

y=wavrecord(5*Fs,Fs); wavplay(y,Fs);

12FourierSeries

0510152025300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 frequency (Hz) power timedomain. asinglefrequency.

7.Fouriertransformasa¯lter

beforetakingthe®taddtheline f=f+4*randn(1,N); 5. extractsignalsburiedinanoisybackground.

FourierSeries13

wouldbetheprimarysignalwithnonoise. andplayit. runningthesignalthroughafewresistors.

AppendixA.

startwithZ1 0 sin(2¼nt)sin(2¼mt)dt(A1) and

Thereforewecanwrite

Usingthisexpressionwewritetheintegralas

1 2Z 1 0 whichreducesto 1 2Z 1 0

14FourierSeries

Performingtheintegralyields

1 2µ ¯1

0:(A7)

Evaluatingatzeroandonegivesyou

sin(2¼(n¡m)) weobtain, 1 2Z 1 0 (1¡cos(2¼nt+2¼nt))dt(A9)

Performingtheintegralis

1

2¡sin(4¼tn)4¼n¯

¯1 0=1

2:(A10)

Toobtaintheresultfortheintegral

Z 1 0 cos(2¼nt)cos(2¼mt)dt(A11)

2cos(a)cos(b)=cos(a¡b)+cos(a+b):(A12)

Finallywewillcomputetheintegral

Z 1 0 sin(2¼nt)cos(2¼mt)dt:(A13)

Forthisexpressionweusethetrigidentity

Usingthisexpressionwewritetheintegralas

1 2Z 1 0

Performingtheintegralis

1 2µ ¯1

0:(A16)

Evaluatingatzeroandonegivesyou

cos(2¼(n¡m))¡1

FourierSeries15

weobtain, 1 2Z 1 0 sin(4¼nt)dt=0:(A18) tionoftheFourierseries.quotesdbs_dbs14.pdfusesText_20

[PDF] fourier series of even functions

[PDF] fourier series plot

[PDF] fourier series poisson equation

[PDF] fourier series problems and solutions

[PDF] fourier series problems in signals and systems

[PDF] fourier series representation can be used in case of non periodic signals to 1 point

[PDF] fourier series representation can be used in case of non periodic signals too. true or false

[PDF] fourier series representation of periodic signals

[PDF] fourier series signals and systems pdf

[PDF] fourier series solved examples pdf

[PDF] fourier series square wave matlab

[PDF] fourier sine and cosine series calculator

[PDF] fourier sine and cosine series examples pdf

[PDF] fourier sine and cosine series expansion

[PDF] fourier sine transform heat equation