[PDF] Introduction à la théorie des graphes





Previous PDF Next PDF



Théorie des graphes

Ecrire un programme Python permettant de calculer le nombre d'amis de chaque utilisateur du réseau. « d'amitiés » précédent. 4.3. Implémentation d'un graphe 



Théorie des graphes et optimisation dans les graphes Table des

Taille mémoire nécessaire : la matrice d'adjacence d'un graphe ayant n sommets nécessite de l'ordre de O(n2) emplacements mémoire. Si le nombre d'arcs est très 



Quelques rappels sur la théorie des graphes

L'algorithme 1 présente la méthode du parcours d'un graphe en largeur. -9/28-. Page 10. IUT Lyon. Informatique. Théorie des Graphes.



TP 2 : Théorie des graphes 1 Introduction

Instructions. Il s'agit d'un TP Python pour lequel il est conseillé d'utiliser Spyder Python 3.6. Voici les principales consignes :.



Graphes et Python - Nanopdf

La question à l'origine de la théorie des graphes est due à Euler en 1736 : dans cette partie de la ville de Königsberg. Peut-on



Introduction à la théorie des graphes

Le problème consiste à construire un cycle eulérien ce qui est impossible



Graphes et outils logiques

15 janv. 2020 0.6 Théorie arithmétique : récurrence . ... Contexte (ou théorie) ... Réalisation en Python le graphe étant donné sous la forme d'un dic-.



Poly dInfo 2 - Mathématiques - IUT de Nantes

1.15 Les graphes avec Python . time que les connaissances sur la théorie des graphes ne forment pas une théorie mais « un savoir une série de faits« .



N1MA0011_Poly_Elements de theorie des graphes

Éléments de théorie des graphes – Éric Sopena. MHT063. 2 version du mardi 29 janvier 2013 La représentation en Python du graphe G ci-dessus sera alors :.



À la recherche du plus court chemin

Ce calcul fait appel à la théorie des graphes et utilise différents algorithmes Langage Python par exemple si l'on veut faire implémenter l'algorithme ...



[PDF] Modélisation de graphes en Python - ZoneNSI

Obtenir un graphe vide par une méthode constructeur 2 Etre capable d'ajouter un noeud/sommet à un graphe existant 3 Etre capable d'ajouter des arêtes/arcs à 



[PDF] Théorie des graphes

Le programme Python suivant permet de simuler le parcours aléatoire du graphe précédent en utilisant une liste d'adjacence des hyperliens : Q20 Modifier le 



[PDF] TP 2 : Théorie des graphes 1 Introduction - CELENE

Voici donc quelques opérations simples sur les graphes accessibles grâce à cette bibliothèque Créer un graphe : 1 G = nx Graph() #Crée un graphe G non orienté



[PDF] Formation LIESSE 2021 Théorie des graphes sous Python

10 mai 2021 · output=”test-graph-tool pdf ”) Aime Alice Bob Yannis Haralambous (IMT Atlantique) Formation LIESSE 2021Théorie des graphes sous Python



[PDF] N1MA0011_Poly_Elements de theorie des graphes

Éléments de théorie des graphes – Éric Sopena MHT063 2 version du mardi 29 janvier 2013 La représentation en Python du graphe G ci-dessus sera alors :



[PDF] Graphes - Université Paris Cité

1 15 Les graphes avec Python time que les connaissances sur la théorie des graphes ne forment pas une théorie mais « un savoir une série de faits«



[PDF] Les graphes

31 mai 2021 · Savoir utiliser un graphe pour en déduire l'existence de Les scripts Python Sur la théorie des graphes appliquée aux jeux



[PDF] Théorie des graphes et optimisation dans les graphes - CNRS

Théorie des graphes et optimisation dans les graphes Christine Solnon Table des matières 1 Motivations 3 2 Définitions 4 3 Représentation des graphes



[PDF] Quelques rappels sur la théorie des graphes - CNRS

Quelques rappels sur la théorie des graphes 1 1 Définitions 1 1 1 Graphes non orientés Définition 1 1 Un graphe non orienté G est la donnée d'un couple G 



[PDF] Graphes

I Eléments de la théorie des graphes 2 LSVIII-BIM Algorithmie 2019 Un graphe orienté G noté G = (S A) est un ensemble fini S de sommets (ou nœuds) 

:

Introduction à la théorie des graphes

Eric Sigward

e.sigward@ac-nancy-metz.fr

Introduction2

Définitionsetpremiersexemples2

Terminologie7

Élémentsdelathéoriedesgraphes9

LesgraphesenTerminaleES34

Exercices35

Solutionsdesexercices38

Complément:lesarbres43

1

A Introduction

L"histoire de la théorie des graphes débute peut-être avec les travaux d"Euler au XVIII e siècle et trouveson originedans l"étudede certains problèmes, tels que celui demandaient s"il était possible, en partant d"un quartier quelconque de la ville, de traverser tous les ponts sans passer deux fois par le même et de revenir à leur point de départ), la marche du cavalier sur l"échiquier ou le problème de coloriage de cartes. La théorie des graphes s"est alors développée dans diverses disciplines telles que la chimie, la biologie, les sciences sociales. Depuis le début du XX e siècle, elle constitue une branche à part entière des mathématiques, grâce aux travaux de De manière générale, un graphe permet de représenter la structure, les connex- ions d"un ensemble complexe en exprimant les relations entre ses éléments : réseau de communication, réseaux routiers, interaction de diverses espèces animales, cir- cuits électriques,... Les graphes constituent donc une méthode de pensée qui permet de modéliser une grande variété de problèmes en se ramenant à l"étude de sommets et d"arcs. Les derniers travaux en théorie des graphes sont souvent effectués par des infor- maticiens, du fait de l"importance qu"y revêt l"aspect algorithmique.

B Définitions et premiers exemples

B.1 Graphes non orientés

1.Définition

Un graphe simpleGest un couple formé de deux ensembles : un ensemble X=fx1 ;x2 ;:::;xn gdont les éléments sont appeléssommets, et un ensemble A=fa1 ;a2 ;:::;am g, partie de l"ensembleP2(X) des parties à deux éléments de X, dont les éléments sont appelé sarêtes. On noteraG=(X; A).

Lorsque

a=fx; yg2A, on dit queaest l"arête deGd"extrémitésxety,ouque ajointxety, ou queapasse parxety. Les sommetsxetysont ditsadjacents dansG. 2

2.Définition

Un multigrapheG=(X ; A; f)est déterminé par : - un ensemble

Xde sommets

- un ensemble

A;cette fois abstrait

- une application f:A!P2 (X) Dans cet exemple,x,y,z,tsont les sommets du multigraphe et :f(a1 )=f(a2 )=f(a3 )=fx; tg;f(a4 )=fx; yg;f(a5 )=fx; zg;f(a6 )=fz; tg; Unmultigraphe avec bouclesest un triplet(X ; A; f)oùfest une application de

AdansP2

(X)[P1 (X);en d"autres termes, un multigraphe avec boucles peut comprendre des arêtes multiples entre deux sommets donnés ainsi que des boucles multiples en un sommet.

3.Exemples:

a. Le graphe d"un tournoi,

T=(X; A)où :

Xest l"ensemble des participants au tournoi

Aest l"ensemble des paires de joueurs se rencontrant dans le tournoi. b. La carte routière de la France,

F=(X; A)où

Xest l"ensemble des villes de la France.

A=ffx; yg=il y a au moins une route directe reliant les villesxetyg: c. Le graphe discret d"ordren,Dn =(X;;): d. Le graphe complet d"ordren,Kn ;oùX=f1;2;:::;ngetA=P2 (X) K1 K2 K3 K4 K5 e. Le graphe biparti-completKp;qoùX=fx1 ;x2 ;:::;xp ;y1 ;y2 ;:::;yq get

A=ffxi

;yj g=16i6pet16j6qg 3 K4;2 f. Le cycleCn,oùX=f1;2;:::;ngetA=ff1;2g;f2;3g;:::;fn1;ng;fn;1gg C4

4.Définition

Soit G=(X; A)un graphe simple, etxun sommet de ce graphe. Ledegré dex, notéd(x), est le nombre d"arêtes incidentes àx;c"est-à-dire contenantx.

Lorsque

d(x)= 0, on dit que le sommetxestisolé, lorsquex=1, il est dit pendant.

Exemples:

si xest un sommet deCn,d(x)=2 sixest un sommet deKn,d(x)=n1

5.Définition

Un graphe simple est dit

régulierde degrér, lorsque tous ses sommets sont de degré r.

6.Lemme des poignées de mains

Soit

G=(X; A)un graphe simple, alors

Xx2X d(x)=2jAj En effet, chaque pairefx; ygdeAest comptée deux fois, une fois pourd(x)et une seconde fois pour d(y):

Remarque

Le lemmedes poignées demains restevalablepourles multigraphesavec boucles en convenant qu"une boucle contribue pour 2 dans le calcul du degré d"un som- met.

7.Exercices

a. Montrer qu"un graphe simple a un nombre pair de sommets de degré impair.

Notons

Pl"ensemble des sommets de degré pair etIl"ensemble des sommets de degré impair d"un graphe simple

G=(X; A):PetIformentune partition

4 deX;d"après le lemme des poignées de mains, on a : Xx2X d(x)=2jAj= Xx2P d(x)+ Xx2I d(x)

Or2jAjet

Xx2P d(x) sontdes entierspairs, onendéduitalors que Xx2I d(x) est également pair, comme différence de deux entiers pairs. Chaque terme de cette dernière somme est impair, elle ne peut donc être paire que si et seule- ment si le nombre de termes est pair, on a donc montré que jIjest un entier pair. b. Est-il possible de relier 15 ordinateurs de sorte que chaque appareil soit relié avec exactement trois autres ? Considérons le graphe simple dont les sommets sont les 15 ordinateurs, les arêtes étant les liaisons entre ces ordinateurs. Si chaque appareil est relié à exactement 3 ordinateurs du réseau, les sommets du graphe sont tous de degré impair. D"après le résultat établi dans l"exercice précédent, un tel graphe doit posséder un nombre pair de sommets, le réseau est donc impossible. c. Montrer que le nombre total de gens qui ont habité la Terre et qui ont donné un nombre impair de poignées de mains est pair. Considérons le graphedontles sommets sont les gens quionthabité laTerreet dont les arêtes représentent les poignées de mains échangées entre ces person- nes. La réponse à la question découle immédiatement du résultat du premier exercice.

B.2 Graphes orientés

1.Définition

Un grapheorientéGest forméde deuxensembles : unensembleX=fx1 ;x2 ;:::;xn g dont les éléments sont appelés sommets, et un ensembleA=fa1 ;a2 ;:::;am g, partie du produitcartésien XX, dont les éléments sont appelésarcs. On notera

G=(X; A).

Sia=(x; y)est unarcdu grapheG,xest l"extrémitéinitialedeaetyl"extrémité finale de a. 5

Remarque

À tout graphe orienté

G=(X; A);on associe le graphe simple(X; B)où :

fx; yg2B,((x; y)2Aou(y; x)2A))

2.Définition

Soit xun sommet d"un graphe orienté. On noted +(x)le nombre d"arcs ayantx comme extrémité initiale, etd (x)le nombre d"arcs ayantxcomme extrémité finale. Ainsi, on a : d(x)=d +(x)+d (x)

3.Exercice

G=(X; A)est un graphe orienté, montrer que:Xx2X d +(x)= Xx2X d (x)

En effet, on a clairement :

Xx2X d +(x)= Xx2X d (x)=jAj: 6

C Terminologie

Sous-graphe:H=(Y; B)est un sous-graphe deG=(X; A)siYXet BA: Graphe partiel:H=(Y; B)est un graphe partiel deG=(X; A)siY=Xet BA: Ordre d"ungraphe: l"ordred"ungrapheest le nombrede sommets dece graphe. Chaîne: suite finie de sommets reliés entre eux par une arête. Chaîne simple: chaîne qui n"utilise pas deux fois la même arête. Chaîne eulérienne: chaîne simple passant par toutes les arêtes d"un graphe. Chaîne hamiltonienne: chaîne simple passant par tous les sommets d"un graphe une et une seule fois. Chemin: suite de sommets reliés par des arcs dans un graphe orienté. Cycle: chaîne qui revient à son point de départ. Cycle eulérien: cycle simple passant par toutes les arêtes d"un graphe une et une seule fois. Cycle hamiltonien: cycle simple passant par tous les sommets d"un graphe une et une seule fois. Graphe connexe: un grapheGest dit connexe si pour toute paire de sommets fx; ygdeG, il existe une chaîne de premier termexet de dernier termey. Arbre: graphe connexe sans cycle simple et sans boucle. Graphe eulérien: graphe qui possède un cycle eulérien. Graphe semi-eulérien: graphe qui possède une chaîne eulérienne. Graphe hamitonien: graphe qui possède un cycle hamiltonien. Graphe semi-hamiltonien: graphe qui possède une chaîne hamiltonienne. Graphe valué: graphe où des réels sont associés aux arêtes. Dans cet exposé, on ne considérera que des valuations positives. Longueur d"une chaîne: nombre des arêtes qui composent la chaîne. Valeur d"une chaîne: somme des valeurs des arêtes (arcs) d"une chaîne d"un graphe valué. Distance entre deux sommets: longueur de la plus courte chaîne joignant ces deux sommets. Diamètre d"ungraphe: maximum des distances entre les sommets d"un graphe. Indice chromatique: nombre minimal de couleurs permettant de colorier les 7 arêtes d"un graphe, de telle sorte que deux arêtes adjacentes n"aient pas la même couleur. Nombre chromatique d"un graphe: nombre minimal de couleurs permettant de colorier les sommets d"un graphe, de telle sorte que deux sommets adjacents n"aient pas la même couleur. 8

D Éléments de la théorie des graphes

D.1 Graphes eulériens

1.Théorème d"Euler(1766)

Un graphe simple connexe

G=(X; A)est eulérien si et seulement si pour tout sommet xdeX,d(x)est pair.

Démonstration

quotesdbs_dbs44.pdfusesText_44
[PDF] parcours en largeur graphe

[PDF] parcours en profondeur itératif

[PDF] algorithme parcours en profondeur python

[PDF] parcours en largeur graphe java

[PDF] conflit de puissance définition

[PDF] parcours lecture acces pas cher

[PDF] parcours lecture pdf

[PDF] parcours lecture le petit chaperon rouge

[PDF] parcours lecture acces avis

[PDF] parcours lecture occasion

[PDF] coexistence pacifique cours

[PDF] archives militaire en ligne

[PDF] livret militaire en ligne

[PDF] la coexistence pacifique de 1953 ? 1962 pdf

[PDF] cornière catnic