[PDF] de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1





Previous PDF Next PDF



Parité dune fonction Centre et axe de symétrie dune courbe

Centre et axe de symétrie d'une courbe. On considère une fonction f définie sur Df . Fonction paire. On dit que la fonction f est paire si l'ensemble Df est 



Fonctions : symétries et translations

27 fév. 2017 3.1 Symétrie par rapport à un axe vertical . ... Définition 1 : Une fonction numérique f d'une variable réelle x est une relation.



TD - Eléments de symétrie dune courbe 1 Axe de symétrie 2 Centre

Cf est la courbe représentative d'une fonction f dans un rep`ere Pour démontrer que la droite d'équation x = a est axe de symétrie de la courbe Cf.



de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1

Calculer la fonction dérivée de f et étudier son signe. Montrer que la droite d'équation x = ?1 est axe de symétrie de (Cf ).



Axe et centre de symétrie dune courbe

Axe et centre de symétrie d'une représentation graphique de fonction. Soit f une fonction définie sur l'ensemble Df et qui est représentée graphiquement 



Axe de symétrie dune parabole (1)

= >. 1 0 a donc la fonction admet un minimum lorsque =3 x . Ce minimum vaut alors -4 . Exercices. Déterminer l'extremum de la fonction f définie par :.



Exercices

Généralités sur les fonctions. Exercice 1 : Axe de symétrie. 1) Sur votre calculatrice tracer la fonction f définie par f(x) = x2 ? 2x ? 1.



FONCTIONS POLYNÔMES DE DEGRÉ 2

est l'axe de symétrie de la parabole représentant la fonction . Méthode : Représenter graphiquement une fonction du second degré à partir de sa forme.



Série dexercices no2 Les fonctions Exercice 1 : images et

Après avoir déterminé son ensemble de définition montrer que la courbe représentative Cf de f possède un axe de symétrie qu'il faudra calculer.



FONCTIONS COSINUS ET SINUS

Conséquences : - Dans un repère orthogonal la courbe représentative de la fonction cosinus est symétrique par rapport à l'axe des ordonnées. - Dans un repère 



[PDF] Parité dune fonction Centre et axe de symétrie dune courbe

Df f( a – x) = f(a + x) alors la droite d'équation x = a est un axe de symétrie de la courbe représentative de f Exemple: f(x) = x² – 2x – 3 Son ensemble 



[PDF] Fonctions : symétries et translations - Lycée dAdultes

27 fév 2017 · Montrer que Cf est symétrique par rapport à l'axe x = 1 On change de repère passant de (O ? l) à (A ? l) On a les relations suivantes :



[PDF] Axe et centre de symétrie dune courbe - B Sicard

Axe et centre de symétrie d'une représentation graphique de fonction Soit f une fonction définie sur l'ensemble Df et qui est représentée graphiquement 



Centre & axe de symétrie dune courbe y = f(x) - ChronoMath

La reconnaissance d'un centre ou d'un axe de symétrie pour une courbe définie d'équation y = 1/x représentative d'une fonction impaire f : x ? 1/x 



[PDF] Etude de fonctions

3) Eléments de symétries Axe de symétrie Soit f une fonction numérique ; Df son domaine de définition C sa courbe représentative dans le plan



[PDF] Axe de symétrie dune parabole (1)

1 y x Ici ? =2 la parabole admet donc pour axe de symétrie la droite d'équation =2 x Exercices Donner l'axe de symétrie de la parabole d'équation : 1



[PDF] 1 Axe de symétrie - Free

1 Axe de symétrie Pour démontrer que la droite d'équation x = a est axe de symétrie de la courbe Cf • Méthode 1 : Par changement de rep`ere



[PDF] Propriétés de symétrie dune courbe

Montrer que la droite d'équation x = 3 2 est axe de symétrie de la courbe représentative de la fonction f définie sur R par f(x) = 2x² ? 6x + 5 Indications



[PDF] Eléments de symétrie dune courbe

Démontrer en utilisant les deux méthodes que la droite d'équation x = 1 2 est un axe de symétrie de (C) Centre de symétrie Pour démontrer que le point ?(a; 



[PDF] i axe de symétrie - Free

1 - ÉLÉMENTS DE SYMÉTRIE D'UNE COURBE I AXE DE SYMÉTRIE Théorème : Soit f une fonction définie sur une partie D de IR et soit C sa courbe représentative 

  • Comment trouver l'axe de symétrie d'une fonction ?

    L'axe de symétrie est perpendiculaire au segment (ils forment un angle de 90°). À l'aide d'une équerre, trace une droite perpendiculaire au segment, qui passe par le milieu du segment. La droite (d) est perpendiculaire au segment [XY] et passe par son milieu (M). La droite (d) est l'axe de symétrie du segment [XY].
  • C'est quoi l'axe de symétrie d'une fonction ?

    Droite qui sépare une figure et son image par une réflexion. Une figure a donc un axe de symétrie si on peut la superposer sur elle-même par un pliage selon cet axe.
  • Comment montrer qu'une fonction admet un axe de symétrie ?

    On veut démontrer que la courbe Cf admet la droite d'équation x = a comme axe de symétrie. Il faut montrer que Df est symétrique par rapport à a. Ensuite il faut montrer que f(a+h) = f(a-h) pour tout réel h tel que a+h et a-h appartiennent à l'ensemble de définition Df.
de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1 de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°1:

On donne la fonctionfd´efinie surRpar :f(x) =-x4+ 2x2+ 1. On appelle Γ la courbe repr´esentative defdans un rep`ere orthonorm´e (O;?ı,??) . 1.

´Etudier la parit´e def.

2. D´eterminer les limites defaux bornes de son domaine de d´efinition.

3. Calculer la fonction d´eriv´ee defet ´etudier son signe.

4. Dresser le tableau de variations def.

5. Tracer la courbe repr´esentative def.

Corrig´e

Exercice n°2:

Soit la fonction d´efinie surR- {1}, parf(x) =x2+x+ 1x-1. On note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Montrer que (Cf) admet un centre de sym´etrie en un point d"abscisse 1.

2. D´eterminer les limites defaux bornes de son domaine de d´efinition. Que peut-on

en d´eduire pour (Cf)?

3. D´eterminer trois r´eelsa, betctels que :f(x) =ax+b+x

x-1.

4. En d´eduire l"existence d"une asymptote oblique pour (Cf) en +∞.

5. Calculer la fonction d´eriv´ee defet ´etudier son signe.

6. Dresser le tableau de variation def.

7. Tracer (Cf).

Corrig´e

Exercice n°3:

On donne la fonctionfd´efinie parf(x) =3x2+ 2x-3, et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. D´eterminer le domaine de d´efinitionDfde la fonctionf.

2. Montrer que la droite d"´equationx=-1 est axe de sym´etrie de (Cf).

Dans la suite de l"exercice, la fonctionfsera ´etudi´ee sur [-1;1[?]1;+∞[.

3. D´eterminer les limites en 1 et la limite en +∞. Que peut-on en d´eduire pour (Cf)?

4. Calculer la fonction d´eriv´ee defet ´etudier son signe.

5. Dresser le tableau de variations def.

6. Tracer (Cf).

Corrig´e

L.BILLOT 1DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°4:

On donne la fonctionfd´efinie parf(x) =x2x2-2x+ 2, et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. D´eterminer le domaine de d´efinition def.

2. D´eterminer les limites defaux bornes du domaine, en d´eduire l"existence d"une

asymptote horizontale (Δ) pour (Cf). 3. ´Etudier les positions relatives de (Cf)et de (Δ).

4. Calculer la fonction d´eriv´ee defet ´etudier son signe.

5. Dresser le tableau de variations def.

6. Tracer (Cf).

Corrig´e

Exercice n°5:

On donne la fonctionfd´efinie parf(x) =2x3+ 272x2et on note (Cf) sa courbe repr´e- sentative dans un rep`ere orthonorm´e.

1. D´eterminer l"ensemble de d´efinitionDfdef.

2. D´eterminer les limites defaux bornes de son ensemble de d´efinition.

3. Montrer que la droite d"´equationy=xest asymptote oblique `a la courbe en +∞

et en-∞.

4. (a) Justifier l"´equivalence :x?3?x3?27.

(b) Calculer la fonction d´eriv´ee def. (c)

´Etudier le signe def?.

5. Dresser le tableau de variations def.

6. Tracer la courbe repr´esentative def.

Corrig´e

Exercice n°6:

On donne la fonctionfd´efinie surRparf(x) = cos2x-2cosxet on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. (a) Montrer quefest 2π-p´eriodique.

(b) Montrer quefest paire.

2. (a) Montrer que la fonction d´eriv´ee defs"´ecrit :f?(x) = 2sinx(1-2cosx).

(b)

´Etudier le signe def?sur [0;π].

3. Dresser le tableau de variations defsur [0;π].

4. Tracer (Cf) sur un intervalle de longueur 4π.

Corrig´e

L.BILLOT 2DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°7:

On donne la fonctionfd´efinie surRparf(x) =sinx1-sinxet on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Montrer quefest d´efinie ssix?=π

2+ 2kπaveck?Z.

2. Montrer quefest 2π-p´eriodique.

Pour la suite de l"exercice, on ´etudiera la fonction sur l"intervalle? -3π

2;π2?

3. D´eterminer les limites defen :

(a)-3π

2par valeurs sup´erieures,

(b)

2par valeurs inf´erieures,

4. Calculer la fonction d´eriv´ee defet ´etudier son signe.

5. Dresser le tableau de variations def

6. Tracer (Cf) sur?

-3π

2;5π2?

Corrig´e

Exercice n°8:

On donne la fonctionfd´efinie surRparx2-|x|et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Montrer quefest paire.

2. Donner l"expression defsans valeur absolue surR+puis surR-.

3.

´Etudier la d´erivabilit´e defen 0.

4.

´Etudier la fonctionfsurR+.

5. Tracer (Cf) surR.

Corrig´e

Exercice n°9:

On donne la fonctionfd´efinie surRparx-?|x-1|et on note (Cf) sa courbe repr´esentative dans un rep`ere orthonorm´e.

1. Donner l"expression defsans valeur absolue sur [1;∞[ et sur ]- ∞;1].

2.

´Etudier la d´erivabilit´e defen 1.

3.

´Etudier la fonction sur ]- ∞;1].

4.

´Etudier la fonction sur [1;+∞[.

5. Dresser le tableau de variations defsurR.

6. Tracer la courbe (Cf).

Corrig´e

L.BILLOT 3DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions D´efinition :soitxun nombre r´eel, on appelle partie enti`ere dexet on noteE(x), le plus grand entier inf´erieur ou ´egal `ax.

Exemples :

E(5,4) = 5E(⎷

2) = 1E(4) = 4E(-2,5) =-3.

Exercice n°10:

Tracer la courbe repr´esentative de la fonction partie enti`ere :x?→E(x) sur l"intervalle [-3,3[.

Corrig´e

Exercice n°11:

On d´efinit surRla fonctionfpar :f(x) =x-E(x).

1. Montrer queEest p´eriodique de p´eriode 1.

2. Donner l"expression defsur [0,1[ puis sur [1,2[.

3. Tracer la courbe repr´esentative defsur [-3,3[.

Corrig´e

L.BILLOT 4DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°1:

1. Pour toutx?R,-x?R. (On peut aussi dire que le domaine de d´efinition est

centr´e en 0.) soitx?R,f(-x) =-(-x)4+2(-x)2+1 =-x4+2x2+1 =f(x), doncfest paire

2. lim

x→+∞f(x) = limx→+∞-x4=-∞et par sym´etrie : limx→-∞f(x) =-∞.

3.fest d´erivable surRet pour toutx?R, on a :f?(x) =-4x3+ 4x= 4x(1-x2).

D"une part 4x?0?x?0, d"autre part 1-x2?0?x?[-1;1] (r`egle du signe du trinˆome), ce qui donne : x0 1 +∞ 4x0++

1-x2+0-

f?(x)0+0-

4.x0 1 +∞

f?(x)0+0- 2 f(x)

1-∞

5. 123
-1 -2 -3 -4 -51 2 3 4-1-2-3-4-5 Dans un graphique doivent apparaˆıtre toutes les droites dont il a ´et´e question dans le sujet, auquel s"ajoutent les tangentes horizontales.

Retour

L.BILLOT 5DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°2:

1. Le domaine de d´efinition est centr´e en 1, de plus pour touth?= 0, on a :

1

2[f(1 +h) +f(1-h)] =12?

(1 +h)2+ (1 +h) + 11 +h-1+(1-h)2+ (1-h) + 11-h-1? 1 2?

3 + 3h+h2h+3-3h+h2-h?

1 2?

3 + 3h+h2-3 + 2h-h2h?

=12×6hh= 3 Donc le point Ω de coordonn´ees (1;3) est centre de sym´etriede (Cf).

2.•limx→+∞f(x) = limx→+∞x

2 x= limx→+∞x= +∞et par sym´etrie, limx→-∞f(x) =-∞.

•limx→1(x2+x+ 1) = 3 et lim

x >→1x-1 = 0+, donc lim x >→1f(x) = +∞, et par sym´etrie : lim x <→1f(x) =-∞.

3. Pour toutx?= 1,ax+b+c

x-1=(ax+b)(x-1) +cx-1=ax2+ (b-a)x+c-bx-1, en identifiant le num´erateur de cette fraction avec celui def(x), on obtient :???a= 1 b-a= 1 c-b= 1????a= 1 b= 2 c= 3, doncf(x) =x+ 2 +3 x-1.

4. lim

x→+∞3 x-1= 0, donc limx→+∞(f(x)-(x+2)) = 0 et la droite (d) d"´equationy=x+2 est asymptote `a la courbe en +∞. Puisque Ω?(d), nous pouvons d´eduire que (d) est aussi asymptote `a (Cf) en-∞.

5. Pourx?= 1,fest d´erivable comme quotient de deux polynˆomes, et :

f ?(x) =(2x+ 1)(x-1)-(x2+x+ 1) (x-1)2=x2-2x-2(x-1)2. Pour toutx?= 1,(x-1)2>0, doncf?(x) est du signe dex2-2x-2, polynˆome ayant pour racines 1-⎷

3 et 1 +⎷3 qui, d"apr`es la r`egle du signe du trinˆome est

positif ssix?]- ∞;1-⎷

3[?]1 +⎷3;+∞[.

6. x-∞1-⎷3 1 1 +⎷3 +∞ f?(x)+0--0+

3-2⎷3+∞+∞

f(x) -∞ -∞3 + 2⎷3

Remarque : il ´etait possible de ne faire que

la moiti´e du tableau de variations.2468 -2 -4 -62 4 6-2-4-6

Retour

L.BILLOT 6DDL

de la 1`ereS `a la TS. Chapitre 4 :´Etudes de fonctions

Exercice n°3:

1.fest d´efinie ssix2+ 2x-3?= 0 ssix?= 1 etx?=-3, doncDf=R- {-3;1}.

2.Dfest sym´etrique par rapport `a 1, et pour touth?=±2, on a :

f(-1 +h) =3 (-1 +h)2+ 2(-1 +h)-3=3h2-4, etf(1 +h) =3quotesdbs_dbs29.pdfusesText_35
[PDF] définition d'un axe de symétrie

[PDF] définition symétrie axiale

[PDF] panneau routier avec 3 axes de symétrie

[PDF] axe de symétrie d'une fonction du second degré

[PDF] axe de symétrie et panneaux de signalisation

[PDF] qu'est ce que le plan obésité

[PDF] architecte centre pompidou paris

[PDF] description du centre pompidou

[PDF] regulation chimique de la respiration

[PDF] centre pneumotaxique

[PDF] régulation nerveuse de la respiration

[PDF] le réflexe de hering breuer

[PDF] les centres d'impulsion de la mondialisation composition

[PDF] centre d'impulsion de la mondialisation carte

[PDF] centre périphérie mondialisation