[PDF] Electromagnétisme A Particule chargée dans un champ électrique





Previous PDF Next PDF



Physique secondaire 3 programme détudes : document de mise en

Éléments de physique: cours d'introduction – Guide d'enseignement de David G. Martindale



Electromagnétisme Chapitre 1 : Champ magnétique

* Ce sont les régions de l'aimant où la force d'attraction est la plus forte. * Tout aimant possède 2 pôles: pôle Nord (N) et pôle Sud (S). * Les pôles se 



ANNALES SCIENCES PHYSIQUES Terminale D

champ électrique uniforme. Chapitre 6 : Le mouvement d'une particule chargée dans un champ magnétique uniforme. Chapitre 7 : Les oscillations mécaniques.



TSTID2D-CHAP 1-COURS-Les champs magnetiques.pdf

N. S. Page 2. Page 2 / 4. T STI2D. Cours. Physique. Chimie. Chap 1 : Les champs magnétiques. SANTE : Livre p 193 à 206. Ordres de grandeurs de l'intensité du 



Electromagnétisme A Particule chargée dans un champ électrique

Equations horaires du mouvement d'une charge dans un champ magnétique constant Dans tout le cours les vecteurs sont en caractères gras ...



Physique terminale S

Il remarque aussi que le champ magnétique terrestre peut aimanter les cours moyens d'une molécules de gaz entre deux chocs qui expliquait la lenteur.



TUTORAT SANTE STRASBOURG CAHIER DE REMISE A NIVEAU

Dans ce cahier de remise à niveau tu trouveras des vidéos de cours Un champ magnétique peut être généré par plusieurs objets : un aimant ou bien des ...



Chapitre 15 : Le champ magnétique

? Deux pôles d'aimant de natures différentes s'attirent. 2) Utilisation d'un fil parcouru par un courant continu : Expérience d'Oerstedt : Une aiguille 



Chapitre 3: Induction électromagnétique

On observe l'apparition d'un courant induit dans un circuit fermé si : 1) l'intensité ou la direction d'un champ magnétique à travers ce circuit varie ;. 2) la 



Cours délectromagnétisme – femto-physique.fr

Ce cours s'adresse plus particulièrement à des étudiants de premier cycle universitaire ou Calcul du champ magnétique produit sur l'axe d'une spire.



[PDF] Chapitre I- Le champ magnétique

Chapitre I- Le champ magnétique I 1- Introduction I 1 1 Bref aperçu historique Les aimants sont connus depuis l'Antiquité sous le nom de magnétite 



[PDF] Electromagnétisme Chapitre 1 : Champ magnétique - ALlu

Expérimentalement on visualise les lignes de champ à l'aide de grains de limaille de fer : dans le champ chaque grain s'aimante et subit un couple de forces qui 



[PDF] TSTID2D-CHAP 1-COURS-Les champs magnetiquespdf

N S Page 2 Page 2 / 4 T STI2D Cours Physique Chimie Chap 1 : Les champs magnétiques SANTE : Livre p 193 à 206 Ordres de grandeurs de l'intensité du 



[PDF] [PDF] Physique terminale S - Lycée d Adultes

Il explore les lignes de forces du champ magnétique crée au voisinage des sphères d'acier à l'aide d'une petite aiguille ai- mantée il constate alors la 



champ magnétique terminale Cours pdf

TSTID2D-CHAP 1-COURS-Les champs magnetiques pdf Cours Physique Chimie Chap 1 : Les champs magnétiques SANTE : Livre p 193 à 206



[PDF] les champs

LES CHAMPS Physique Secondaire 3 Regroupement 4 page 4 02 APERÇU DU REGROUPEMENT Les forces gravitationnelle électrique et magnétique sont souvent 



[PDF] Le champ magnétique - Unisciel

1 – Répartition volumique de courant : On considère un ensemble de particules de charge q de densité particulaire n et ayant un mouvement d'ensemble à la 



LEÇON 6: Champ magnétique - CÔTE DIVOIRE Lycée Numérique

LEÇON 6: Champ magnétique · Accueil · Cours · TERMINALE · TERMINALE D · Physique - Chimie · TleD_PHY_L6 Aperçu des sections 



[PDF] THEME: ELECTRCITE TITRE DE LA LEÇON : CHAMP MAGNETIQUE

Niveau : Terminales C D Discipline : Physique-Chimie CÔTE D'IVOIRE – ÉCOLE NUMÉRIQUE THEME: ELECTRCITE TITRE DE LA LEÇON : CHAMP MAGNETIQUE



[PDF] Chapitre 15 : Le champ magnétique - Physagreg

1 Chapitre 15 : Le champ magnétique Introduction : Quand on parle de magnétisme nous parlons généralement d'aimants de pôle nord et de pôle sud

:
Electromagnétisme A Particule chargée dans un champ électrique

Electromagnétisme A

Particule chargée dans un champ électrique et dans un champ magnétique

Sommaire

Force de Lorentz

Travail, puissance de la force de Lorentz et énergie mécanique

Application: le canon à électrons

Equations horaires du mouvement d"une charge dans un champ électrique constant Applications: écran cathodique, expérience de Millikan de quantification de la charge Particule chargée dans un champ magnétique: pulsation et rayon de giration Applications: effet miroir, séparation isotopique, chambre à bulles, cyclotron, synchrotron Equations horaires du mouvement d"une charge dans un champ magnétique constant

Application: guidage des particules en mouvement

Oscillateur harmonique dans un champ magnétique: effet Zeeman Oscillateur harmonique excité par une onde électromagnétique: profil d"amortissement en fréquence, raies spectrales I - Force de Lorentz subie par une charge dans un champ électrique et dans un champ magnétique Une particule de charge q mobile, de vitesse v, plongée dans un champ électrique Eet dans un

champ magnétique B, subit la force de Lorentz:F= q (E+ vLB)Permet de définir la nature du champ électrique Eet du champ magnétique Bpar leur action sur

une charge q q E= force électrique , colinéaire au champ électrique (opposée ou même sens selon signe de q). q vLB= force magnétique , orthogonale à la fois à la vitesse vet au champ magnétique B.

Rappel sur le produit vectoriel:

||vLB|| = v B |sin(v,B)|

Si v= 0ou si v// B, pas de force magnétiqueUnités: Fen N, Een V/m; Ben T; q en C; ven m/s.

Rappel: charge élémentaire

e = 1.6 10 -19

C; proton: charge +e, électron: charge -e.

Dans tout le cours, les vecteurssont en caractères gras vLBorthogonal au plan (v, B) Règle de la main droitevers vous opposé II - Travail de la force de Lorentz et énergie mécanique Le travail élémentaire d"une force Fappliquée en M est le produit scalaire dW= F.dOM(unité: Joule) oùdOMest un déplacement élémentaire La puissance de la force Fest P= dW/dt = F.v avec v= dOM/dt (vecteur vitesse)

F.v= q (E+ vLB).v

comme(vLB).vest un produit mixte nul (vorthogonal àvLB), alors La force magnétique ne travaille pas; seule la force électrique travaille

La puissance de la force de Lorentz est

P= q E.v

(unité: W) vB vLB Bv vLB pouceindex majeurpouce index majeur Si m désigne la masse de la particule, le PFD implique: m dv/dt = q E+ q (vLB) Effectuons le produit scalaire avec v: d(½ m v²)/dt = q E.v

Si Edérive du potentiel électrostatique V

(unité: Volt), on a E= -grad(V) or dV= grad(V).dOM (par définition) d"où dV/dt = -E.v

Donc la quantité E

m= ½ m v² + q V est conservée

C"est l"énergie mécanique

de la particule chargée. E c= ½ m v²est l"énergie cinétique et E p= q V est l"énergie potentielle (unité: Joule).

Remarque: en présence de frottements, E

mn"est plus conservée et diminue.

Application: le canon à électrons (accélération)Métal chauffé(cathode temp T) potentiel

V = 0

Vitesse

d"émission thermique des

électrons

v0

Émission

d"électrons

Potentiel

V > 0

Vitesse des

électrons

v à déterminer

½ mv² - e V = ½ mv

0² + 0 = constante

Comme v0<< v v = (2 e V / m) 1/2

V = 10 000 V

v = 0.2 C

½ mv

0² = 3/2 k T (k constante de Boltzman) v

0= (3 k T / m)

1/2

T = 1000 K v

0= 0.0007 C

v0<< C

Accélération

E III - Mouvement d"une particule chargée dans un champ électrique constant

La particule de charge q et de masse m est soumise à la seule force électrique F= q E, oùEest

invariable dans l"espace et dans le temps

Le PFD s"écrit:

m d²OM/dt² = m dv/dt = F= q E

L"accélération est

q E / m ce qui s"intègre vectoriellement et donne les équations horaires v(t) = dOM/dt = (q E / m) t+ v 0 oùv

0est la vitesse initiale

de la charge.

OM(t) = (½ q E / m) t²+ v

0t + OM

0 où M

0est la position initiale

de la charge. Conclusion: le champ électrique accélère ou ralentit une charge dans son mouvement (dépend du sens de la force q Epar rapport àv 0) v0

F = qE

mouvement accéléré

F = qE

mouvement ralenti Exemple:la charge a pour coordonnées [x(t), y(t)] et pour vitesse [v x(t), v y(t)] dans le repère (xOy); en t=0, elle est au point O et possède la vitesse initiale v 0[v

0cos(α), v

0 sin(α)]

vx(t) = v

0cos(α) mouvement à vitesse constante

selon Ox v y(t) = (q E /m) t + v

0 sin(α) mouvement accéléré ou ralenti

selon Oy x(t) = v

0cos(α) t

y(t) = (½ q E / m) t² + v

0sin(α) t

équation de la trajectoire:

y = (½ q E / m) (x / v

0 cos(α))² + x tan(α)

Il s"agit d"une parabole. Si α= 0 (Eorthogonal àv

0), y = (½ q E / m v

0² ) x²

Application1 : oscilloscope à écran cathodique

Eest créé par des plaques parallèles

distantes de d, de longueur l et de différence de potentiel U x = (½ q E x/ m v

0²) l² où E

x= U x/d y = (½ q E y/ m v

0²) l² où E

y= U y/d x, y proportionnels àU x, U y

Ci contre: variété de courbes de

Lissajous obtenues en appliquant

aux plaques de déflexion x et y les tension U x= cos(p t)

Uy=sin(q t)

Pour p, q entiers (p = q donne un

cercle)

Plaques de déflexion

E x E yl l Application 2: expérience de Millikan sur la quantification de la charge mgq E V>0 E

V=0Goutte sphérique d"huile

rayon r, densitér charge q < 0 -6phr v

PFD: m dv/dt = (4/3pr

3r) g - 6phr v +q E = 0 à l"équilibre poids force de frottement force électrique

E = -Ee

z

6phr v = (4/3 pr

3 r) g + q E

v z= -(1/6phr ) (4/3 pr

3 rg+ q E)

1)

E = V/d = 0

la mesure de v zdonne le rayon r de la goutte

2) On fixe E = V/d tel que

vz= 0 q = - 4/3 pr

3 rg / E

Résultat: on trouve statistiquement que la charge q est multiple d"une même quantité, la charge de l"électron - e = - 1.6 10 -19quotesdbs_dbs29.pdfusesText_35
[PDF] champ magnétique spire

[PDF] champ magnétique bobine plate

[PDF] champ magnétique crée par un solénoide exercice corrigé

[PDF] champ magnétique bobine courant alternatif

[PDF] champ magnétique bobine aimant

[PDF] expansion océanique 1s

[PDF] tp expansion océanique 1ère s

[PDF] magnetostatique exercice corrigé

[PDF] champ magnétique crée par un solénoide infini

[PDF] formule champ magnétique bobine

[PDF] champ magnétique formule pdf

[PDF] induction magnétique exercices corrigés

[PDF] theoreme d'ampere solenoide

[PDF] champ magnétique tore

[PDF] champ magnétique solénoide fini