[PDF] [PDF] Systèmes déquations linéaires - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



Méthode du pivot de Gauss

pivot c'est la paire (équation



RÉSOLUTION DÉQUATIONS À LAIDE DEXCEL

Considérons le cas où nous voudrions obtenir les racines de la fonction. 2 3 4 c'est-à-dire de résoudre l'équation 2 3 4 0. Vous.



Annexe C : Matrices déterminants et systèmes déquations linéaires

Un système de 2 équations linéaires à 2 variables est un système de la forme : 4 + 2y. 3. + 7y = –2. On a obtenu une équation à une seule inconnue ...



Systèmes déquations linéaires

Les formules de Cramer pour un système de deux équations sont les De façon surprenante ce système à 3 inconnues et 4 équations a une solution unique :.



METHODE DU PIVOT DE GAUSS

Le cas des systèmes de Cramer à deux ou trois inconnues a été traité dans le chapitre 4 Exemple 2 Considérons le système de 3 équations à 4 inconnues.



RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

2 4 3 0 8 0 8 ;. 3 4 0 12 1. Quoique la première équation du système soit satisfaite la seconde ne l'est pas. Rappelons que



Systèmes linéaires

Mini-exercices. 1. Écrire un système linéaire de 4 équations et 3 inconnues qui n'a aucune solution. Idem avec une infinité de solution.



1. Systèmes déquations linéaires

D'abord il faut savoir que toute équation linéaire à deux inconnues est de la forme ax+by=c. Les points E (1



Systèmes linéaires

8 nov. 2011 Une équation linéaire à trois inconnues x y



ÉQUATIONS INÉQUATIONS

RESOUDRE UNE EQUATION : C'est chercher et trouver le nombre inconnu. 1) L'égalité 3 ? 4 = 5 + 2 est-elle vraie dans les cas suivants :.



[PDF] Méthode du pivot de Gauss

Elle consiste `a sélectionner une équation qu'on va garder intacte et dans laquelle on va rendre une inconnue facile (en l'éliminant des autres équations)



[PDF] Méthode du pivot de Gauss

Elle consiste `a sélectionner une équation qu'on va garder intacte et dans laquelle on va rendre une inconnue facile (en l'éliminant des autres équations)



[PDF] METHODE DU PIVOT DE GAUSS - Toutes les Maths

La méthode du pivot de Gauss permet la résolution générale des systèmes d'équations linéaires à n équations et p inconnues Elle s'utilise notamment pour 



[PDF] Systèmes déquations linéaires - Exo7 - Exercices de mathématiques

De façon surprenante ce système à 3 inconnues et 4 équations a une solution unique : ? = 1 3 ? = 4 3 ? = 1



[PDF] Résolution de systèmes linéaires par la méthode du pivot de Gauss

Un système d'équations linéaires est dit en échelons si sa matrice complète est en échelons Une inconnue est dite principale si l'un de ses coefficients est 



[PDF] Chapitre V La méthode du pivot de Gauss et ses applications

Problème : Résoudre les systèmes linéaires à n inconnues Par exemple un système à trois équations : 4 Cours de M RUMIN réécrit par J KULCSAR



[PDF] Méthode du pivot de Gauss pour résoudre des systèmes linéaires

4 On poursuit ainsi jusqu'à la dernière équation Il y a alors trois possibilités : — Une des équations ne comporte plus d'inconnue et 



[PDF] Chapitre IV Syst`emes dEquations Linéaires

i comme variance (les ?i sont inconnus mais les ?2 i sont supposés connus) H2: Le syst`eme surdéterminé (7 1) poss`ede une solution unique si l'on remplace 



[PDF] Chapitre 4 Systèmes linéaires

Un système de n équations à n inconnues est un système de Cramer si la méthode du pivot de Gauss fait apparaître successivement n pivots (non nuls) Théorème 2



[PDF] Systèmes linéaires

Considérons le système de trois équations à deux inconnues suivant : y = 4 et d'une équation de « compatibilité » sans inconnue : a ? 17 = 0

:
Exo7

Systèmes d"équations linéaires

Corrections d"Arnaud Bodin

Exercice 11.Résoudre de quatre manières dif férentesle système sui vant(par substitution, par la méthode du pi votde

Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

2x+y=1

3x+7y=2

2.

Choisir la méthode qui v ousparaît la plus rapide pour résoudre, selon les v aleursde a, les systèmes

suivants : ax+y=2 (a2+1)x+2ay=1 (a+1)x+ (a1)y=1 (a1)x+ (a+1)y=1

Résoudre les systèmes suivants

8< :x+yz=0 xy=0 x+4y+z=08 :x+y+2z=5 xyz=1 x+z=38 :3xy+2z=a x+2y3z=b x+2y+z=c

Trouver les solutions de

8>>< >:3x+2z=0

3y+z+3t=0

x+y+z+t=0

2xy+zt=0

Étudier l"existence de solutions du système : 8< :ax+by+z=1 x+aby+z=b x+by+az=1: 1 Discuter et résoudre suivant les valeurs des réelsl,a,b,c,dle système : (S)8 >:(1+l)x+y+z+t=a x+(1+l)y+z+t=b x+y+(1+l)z+t=c x+y+z+(1+l)t=d Z 4

2P(x)dx=aP(2)+bP(3)+gP(4):

Indication pourl"exer cice6 NÉcrire les polynômes sous la formeP(x) =ax3+bx2+cx+d. CalculerR4

2P(x)dxd"une part etaP(2)+

bP(3)+gP(4)d"autre part. L"identification conduit à un système linéaire à quatre équations, d"inconnues

a;b;g.3

Correction del"exer cice1 N1.(a) Par substitution.La première équation s"écrit aussiy=12x. On remplace maintenantydans la

deuxième équation

3x+7y=2=)3x+7(12x) =2=)11x=9=)x=911

Onendéduity:y=12x=12911

=711 . Lasolutiondecesystèmeestdonclecouple(911 ;711 N"oubliez pas de vérifier que votre solution fonctionne ! (b)Par le pivot de Gauss.On garde la ligneL1et on remplace la ligneL2par 2L23L1:

2x+y=1

3x+7y=2()2x+y=1

11y=7 Onobtientunsystèmetriangulaire: onendéduity=711 etalorslapremièrelignepermetd"obtenir x=911 (c)Par les matrices.En terme matriciel le système s"écrit

AX=YavecA=2 1

3 7 X=x y Y=1 2 On trouve la solution du système en inversant la matrice :

X=A1Y:

L"inverse d"une matrice 22 se calcule ainsi

siA=a b c d alorsA1=1adbc db c a Il faut bien sûr que le déterminant detA=a b c d =adbcsoit différent de 0.

Ici on trouve

A 1=111 71
3 2 etX=A11 2 =111 9 7

(d)Par les formules de Cramer.Les formules de Cramer pour un système de deux équations sont les

suivantes si le déterminant vérifieadbc6=0 : ax+by=e cx+dy=f=)x= e b f d a b c d ety= a e c f a b c d

Ce qui donne ici :

x= 1 1 2 7 2 1 3 7 911
ety= 2 1 32
2 1 3 7 =711 2. (a)

A vanttout on re gardes"il e xisteune solution unique, c"est le cas si et seulement si le déterminant

est non nul. Pour le premier système le déterminant esta1 a

2+1 2a

=a21 donc il y a une unique solution si et seulement sia6=1.

Biensûrtouteslesméthodesconduisentaumêmerésultat! Parexempleparsubstitution, enécrivant

la première ligney=2ax, la deuxième ligne devient(a2+1)x+2a(2ax) =1. On en déduit que sia6=1 alorsx=4a1a

21puisy=2a2+a2a

21.
4 Traitons maintenant les cas particuliers. Sia=1 alors le système devient :x+y=2

2x+2y=1

Mais on ne peut avoir en même tempsx+y=2 etx+y=12 . Donc il n"y a pas de solution.

Sia=1 alors le système devient :x+y=2

2x2y=1et il n"y a pas de solution.

(b)

Ici le déterminant est

a+1a1 a1a+1 = (a+1)2(a1)2=4a. Sia6=0 alors on trouve la solution unique(x;y). Par exemple avec la formule de Cramer x= 1a1 1a+1

4a=12aety=

a+1 1 a1 1

4a=12a:

Sia=0 il n"y a pas de solution.Correction del"exer cice2 N1.Remarquons que comme le système est homogène (c"est-à-dire les coef ficientsdu second membre sont

nuls) alors(0;0;0)est une solution du système. Voyons s"il y en a d"autres. Nous faisons semblant

de ne pas voir que la seconde ligne impliquex=yet que le système est en fait très simple à résoudre.

Nous allons appliquer le pivot de Gauss en faisant les opérations suivantes sur les lignesL2 L2L1et

L

3 L3L1:

8< :x+yz=0 xy=0 x+4y+z=0()8 :x+yz=0

2y+z=0

3y+2z=0

On fait maintenantL3 2L3+3L2pour obtenir :

8< :x+yz=0

2y+z=0

7z=0 En partant de la dernière ligne on trouvez=0, puis en remontanty=0, puisx=0. Conclusion l"unique solution de ce système est(0;0;0). 2.

On applique le pi votde Gauss L2 L2L1etL3 L3L1:

8< :x+y+2z=5 xyz=1 x+z=3()8 :x+y+2z=5

2y3z=4

yz=2

PuisL3 2L3L2pour obtenir un système équivalent qui est triangulaire donc facile à résoudre :

8< :x+y+2z=5

2y3z=4

z=0()8 :x=3 y=2 z=0 On n"oublie pas de vérifier que c"est une solution du système initial. 3. On f aitles opérations L2 3L2+L1etL3 3L3L1pour obtenir : 8< :3xy+2z=a x+2y3z=b x+2y+z=c()8 :3xy+2z=a

5y7z=3b+a

7y+z=3ca

5 Puis on faitL3 5L37L2, ce qui donne un système triangulaire : 8< :3xy+2z=a

5y7z=3b+a

54z=5(3ca)7(3b+a)

En partant de la fin on en déduit :z=154

(12a21b+15c)puis en remontant cela donne 8< :x=118 (8a+5bc) y=118 (2a+b+7c) z=118 (4a7b+5c)Correction del"exer cice3 NOn commence par simplifier le système : on place la ligne L3en première position pour le pivot de Gauss ; on réordonne les v ariablesdans l"ordre : y;t;x;zpour profiter des lignes déjà simples. 8>>< >:y+t+x+z=0

3y+3t+z=0

yt+2x+z=0

3x+2z=0

On commence le pivot de Gauss avec les opérationL2 L23L1etL3 L3+L1pour obtenir : 8>>< >:y+t+x+z=0

3x2z=0

3x+2z=0

3x+2z=0

Les 3 dernières lignes sont identiques, on se ramène donc à un système avec 2 équations et 4 inconnues :

y+t+x+z=0

3x+2z=0

Nous choisissonsxetycomme paramètres, alorsz=32 xett=xyz=12 xy. Les solutions du système sont donc les x;y;z=32 x;t=12

xyjx;y2RCorrection del"exer cice4 N1.Pour éviter d"a voirà di viserpar aon réordonne nos lignes puis on applique la méthode du pivot :

8< :x+by+az=1L1x+aby+z=bL2ax+by+z=1L3()8 :x+by+az=1L1b(a1)y+ (1a)z=b1L2 L2L1b(1a)y+ (1a2)z=1aL3 L3aL1 On fait ensuiteL3 L3+L2pour obtenir un système triangulaire équivalent au système initial : 8< :x+by+az=1 b(a1)y+ (1a)z=b1quotesdbs_dbs44.pdfusesText_44
[PDF] une equation a 3 inconnues

[PDF] résolution d'un convertisseur analogique numérique

[PDF] pas de quantification can

[PDF] filetage si

[PDF] education thérapeutique du patient formation

[PDF] etp définition

[PDF] le hasard et la nécessité monod

[PDF] le hasard et la nécessité citations

[PDF] le hasard et la nécessité analyse

[PDF] le hasard et la nécessité democrite

[PDF] contrat orange