[PDF] [PDF] Systèmes linéaires Un système de 2 é





Previous PDF Next PDF



Equations linéaires à trois inconnues

On dit que la premi`ere est notre inconnue principale et que les deux autres sont nos inconnues secondaires. Page 3. Résoudre en z une équation de plan. Exemple.



Systèmes linéaires

Un système de 2 équations à 3 inconnues. Un système de 3 équations à 3 inconnues. 2. Définition d'un système linéaire. 3. Méthode du pivot de Gauss 



Syst`emes `a deux équations et trois inconnues

Syst`emes `a deux équations et trois inconnues. Dédou. Septembre 2010 Page 3. Equations et plans. 3x ? 2y ? z = 0 ? z = 3x ? 2y.



Algèbre Systèmes de trois équations du premier degré à trois

inconnues il existe plusieurs méthodes pour résoudre des systèmes de trois (3). On va commencer par éliminer l'inconnue y. On multiplie l'équation (1) ...



Annexe C : Matrices déterminants et systèmes déquations linéaires

3. + 7y = –2. On a obtenu une équation à une seule inconnue Un système de 3 équations linéaires à 3 variables est un système de la forme :.



Méthode du pivot de Gauss

pivot c'est la paire (équation



METHODE DU PIVOT DE GAUSS

Le cas des systèmes de Cramer à deux ou trois inconnues a été traité Exemple 2 Considérons le système de 3 équations à 4 inconnues. (S) :.



Systèmes linéaires

1. Exemples préliminaires a) 3 équations – 2 inconnues. Exemple 1.1. Fixons un réel a. Considérons le système de trois équations à deux inconnues suivant :.



Systèmes déquations linéaires

de Gauss en inversant la matrice des coefficients



Systèmes déquations

(3) x2 + x3 = –2. C'est un système de trois équations à trois inconnues. Résolution. L'opération 2 est appelée combinaison linéaire.



[PDF] Systèmes linéaires

Un système de 2 équations à 3 inconnues Un système de 3 équations à 3 inconnues 2 Définition d'un système linéaire 3 Méthode du pivot de Gauss 



[PDF] Algèbre Systèmes de trois équations du premier degré - Permamath

inconnues il existe plusieurs méthodes pour résoudre des systèmes de trois équations du premier degré à trois inconnues Il existe une méthode de 



[PDF] Equations linéaires à trois inconnues

Résoudre une équation de plan c'est choisir une inconnue qu'on exprime en fonction des deux autres On dit que la premi`ere est notre inconnue principale et 



[PDF] 1 Systèmes déquations - Apprendre-en-lignenet

C'est un système de trois équations à trois inconnues Résolution L'opération 2 est appelée combinaison linéaire Pour résoudre un tel système 



[PDF] SYSTÈME DE TROIS ÉQUATIONS A TROIS INCONNUES - Free

Le principe de résolution d'un système de trois équations à trois inconnues consiste à former un système équivalent de trois équations dont deux ne 



[PDF] Systèmes déquations linéaires

Systèmes de deux équations à deux inconnues Cas d'unicité de la solution d'un système 2 × 2 Cas des systèmes 3 × 3 Systèmes d'équations linéaires



[PDF] Systèmes linéaires - Exo7 - Cours de mathématiques

Mini-exercices 1 Écrire un système linéaire de 4 équations et 3 inconnues qui n'a aucune solution Idem avec une infinité de solution



[PDF] Ift 2421 Chapitre 3 Résolution des systèmes déquations linéaires

Chapitre 3 Méthode de Cramer Si A x = b est un système de n équations avec n inconnues tel que det (A) ? 0 alors le système a une solution unique qui 



[PDF] METHODE DU PIVOT DE GAUSS - Toutes les Maths

Le cas des systèmes de Cramer à deux ou trois inconnues a été traité éliminant d'abord l'inconnue x dans les équations (2) et (3) ce qui peut se faire



SYSTÈME DE TROIS ÉQUATIONS A TROIS INCONNUES

SYSTÈME DE TROIS ÉQUATIONS A TROIS INCONNUES Le principe de résolution d un système de trois équations à trois inconnues consiste à former un système 

  • Comment faire une équation à 3 inconnues ?

    Résoudre un système de trois équations d'inconnues x, y et z revient à chercher tous les triplets (x ; y ; z) qui vérifient ces trois équations. Un tel triplet de valeurs (x ; y ; z) est appelé « solution du système d'équations ».
  • Comment savoir si un système est compatible ?

    Le système est compatible si et seulement si le vecteur second membre b est combinaison linéaire des u1, u2,, un. Les coefficients d'une telle combinaison forment une solution du système. On peut traduire cette condition de plusieurs façons équivalentes : La matrice a le même rang que A.
  • Quand Est-ce qu'un système n'a pas de solution ?

    Si tous les coefficients aij sont nuls, et si l'un au moins des bi est non nul, alors le système n'admet pas de solution : S = ?.
  • Système linéaire : Un système est dit linéaire si la fonction qui décrit son comportement est elle-même linéaire. Cette dernière vérifie alors les principes de proportionnalité et de superposition : Principe de proportionnalité : si s(t) est la réponse à l'entrée e(t) alors ? x s(t) est la réponse à l'entrée ? x e(t).

Systèmes linéaires

Aimé Lachal

Cours de mathématiques

1 ercycle, 1reannée

Sommaire

1Exemples préliminaires

Un système de 3 équations à 2 inconnues

Un système de 2 équations à 3 inconnues

Un système de 3 équations à 3 inconnues

2Définition d"un système linéaire

Forme générale

Opérations

3Méthode du pivot de Gauss

Description

Système échelonné

Résolution

Discussion

Exemple de synthèse

Sommaire

1Exemples préliminaires

Un système de 3 équations à 2 inconnues

Un système de 2 équations à 3 inconnues

Un système de 3 équations à 3 inconnues

2Définition d"un système linéaire

3Méthode du pivot de Gauss

1. Exemples préliminairesa) 3 équations - 2 inconnues

Exemple 1.1

Fixons un réela. Considérons le système de trois équations à deux inconnues suivant: (S) :8 :x+y=1E1

2xy=2E2

3x+2y=a E3Résolution.On essaie de faire "disparaître» progressivement les inconnues à l"aide

decombinaisons linéairessur les équations : (S)()8 :x+y=1E 1 y=4E

02=E2+2E1

5y=a+3E

03=E3+3E1()8

:x+y=1E 1 y=4E 02

0=a17E

003=E035E02

On obtient un système composé d"un sous-systèmetriangulairede deux équations à deux inconnues(S00) :nx+y=1y=4et d"une équation de"compatibilité»sans inconnue :a17=0. Cette dernière indique si le système(S)admet des solutions ou non : sia6=17, il n"y a pas de solution, on dit que le système(S)estincompatible; sia=17, l"équation de compatibilité s"écrit0 =0et devient redondan te.Les systèmes(S)et(S00)sont alors équivalents. Le sous-système(S00)étanttriangulaire, il est facile de le résoudre en partant de l"équation du bas puis en "remontant» les équations :E02donney=4, puis en reportant dansE1, on récupèrex=y1=3. Le système(S)admet uneuniquesolution dansR2:(x;y) = (3;4).1

1. Exemples préliminairesa) 3 équations - 2 inconnues

Exemple 1.1

Fixons un réela. Considérons le système de trois équations à deux inconnues suivant: (S) :8 :x+y=1E1

2xy=2E2

3x+2y=a E3Interprétation géométrique

Chaque équation du système(S)représente une droite dans un plan rapporté à un repèreO;~i;~j. Notons

D1la droite d"équationx+y=1

D2la droite d"équation2 xy=2

D3la droite d"équation3 x+2y=a

Résoudre le système(S)revient à déterminer l"intersec- tion de ces trois droites.

La résolution précédente fournit donc :

sia6=17, les droitesD1,D2,D3n"admettent pas de point d"intersection :D1\D 2\D 3=?; sia=17, les droitesD1,D2,D3admettent un point d"intersection, le pointM(3;4), elles sont concourantes:D1\D 2\D 3=fMg:xy 34

O1111MD

1D 2D

3(a=3)D

3(a=5)D

3(a=17)2

1. Exemples préliminairesb) 2 équations - 3 inconnues

Exemple 1.2

Considérons le système de deux équations à trois inconnues suivant : (S) :x+y+z=1E1

2xy+3z=2E2Résolution

On essaie de faire "disparaître» progressivement les inconnues à l"aide de combinaisons linéairessur les équations : (S)()x+y+z=1E 1 y+5z=4E

02=E2+2E1()x+y=1zE

1 y=45zE 02 On obtient un systèmetriangulaire(S0)équivalent à(S)composé de deux équations à deux inconnues dites"principales»(x;y) et une inconnue dite"auxiliaire»(z). Le sous-système(S0)étanttriangulaire, il est facile de le résoudre en partant de l"équation du bas puis en "remontant» les équations :

E02donney=45z,

puis en reportant dansE1, on récupèrex=y+z1=34z. Le système(S)admet une infinité de solutions dansR3: (x;y;z) = (34z;45z;z);z2R:3

1. Exemples préliminairesb) 2 équations - 3 inconnues

Exemple 1.2

Considérons le système de deux équations à trois inconnues suivant : (S) :x+y+z=1E1

2xy+3z=2E2Interprétation géométrique

Chaque équation du système(S)repré-

sente un plan dans l"espace rapporté à un repèreO;~i;~j;~k. Notons

P1le plan d"équationx+y+z=1

P2le plan d"équation2 xy+3z=2

Résoudre le système(S)revient à déter- miner l"intersection de ces deux plans.

La résolution précédente montre que

les plansP1etP2admettent une infi- nité de points d"intersection, les points

M(34z;45z;z),z2R, il s"agit en

fait d"une droiteD: P

1\P 2=D:4

1. Exemples préliminairesc) 3 équations - 3 inconnues

Exemple 1.3

Fixons un réela. Considérons le système de trois équations à trois inconnues suivant: (S) :8 :x+y+z=1E1

2xy+3z=2E2

x+2y+6z=a E3Résolution.On essaie de faire "disparaître» progressivement les inconnues à l"aide

decombinaisons linéairessur les équations : (S)()8 :x+y+z=1E 1 y+5z=4E

02=E2+2E1

y+5z=a1E

03=E2E1()8

:x+y+z=1E 1 y+5z=4E 02 0=a5E

003=E03E02

On obtient un système composé d"un sous-systèmetriangulairede deux équations à deux inconnuesprincipales(x;y) et uneauxiliaire(z)(S00) :x+y+z=1 y+5z=4et d"une équation decompatibilitésans inconnuea5=0. Cette dernière indique si le système(S)admet des solutions ou non : sia6=5, il n"y a pas de solution, le système(S)estincompatible; sia=5, l"équation de compatibilité s"écrit0 =0et devient r edondante.Les systèmes(S)et(S00)sont alors équivalents. Le sous-système(S00)a été résolu dans l"exemple précédent. Ainsi, le système(S)admet une infinité de solutions dansR3: (x;y;z)=(34z;45z;z);z2R:5

1. Exemples préliminairesc) 3 équations - 3 inconnues

Exemple 1.3

Fixons un réela. Considérons le système de trois équations à trois inconnues suivant: (S) :8 :x+y+z=1E1

2xy+3z=2E2

x+2y+6z=a E3Interprétation géométrique Chaque équation de(S)représente un plan dans l"espace rapporté à un repèreO;~i;~j;~k. Notons

P1le plan d"équationx+y+z=1

P2le plan d"équation2 xy+3z=2

P3le plan d"équationx+2y+6z=a

Résoudre le système(S)revient à déterminer l"in- tersection de ces trois plans.

La résolution précédente fournit donc :

sia6=5, les plansP1,P2,P3n"admettent pas de point d"intersection : P

1\P 2\P 3=?;

sia=5, les plansP1,P2,P3admettent comme intersection une droiteD: P

1\P 2\P 3=D:6

1. Exemples préliminairesc) 3 équations - 3 inconnues

Exemple 1.4

Considérons le système de trois équations à trois inconnues suivant : (S) :8 :x+y+z=1E1

2xy+3z=2E2

x+2y+5z=4E3Résolution On essaie de faire "disparaître» progressivement les inconnues à l"aide de combinaisons linéairessur les équations : (S)()8 :x+y+z=1E 1 y+5z=4E

02=E2+2E1

y+4z=3E

03=E2E1()8

:x+y+z=1E 1 y+5z=4E 02 z=1E

003=E03E02

On obtient un systèmetriangulairequi se résout en partant de l"équation du bas puis en remontant les équations :

E003donnez=1,

que l"on reporte dansE02qui donney=45z=1, que l"on reporte dansE1qui donnex=y+z1=1. Le système(S)admet uneuniquesolution dansR3:(x;y;z) = (1;1;1).7

1. Exemples préliminairesc) 3 équations - 3 inconnues

Exemple 1.4

Considérons le système de trois équations à trois inconnues suivant : (S) :8 :x+y+z=1E1

2xy+3z=2E2

x+2y+5z=4E3Interprétation géométrique

Chaque équation du système(S)représente

un plan dans l"espace rapporté à un repèreO;~i;~j;~k. Notons

P1le plan d"équationx+y+z=1

P2le plan d"équation2 xy+3z=2

P3le plan d"équationx+2y+5z=4

Résoudre le système(S)revient à déterminer l"intersection de ces trois plans. La résolution précédente montre que les plans P

1,P2,P3admettent un point d"intersection,

le pointM(1;1;1), ils sontconcourants: P

1\P 2\P 3=fMg:8

Sommaire

1Exemples préliminaires

2Définition d"un système linéaire

Forme générale

Opérations

3Méthode du pivot de Gauss

2. Définition d"un système linéairea) Forme générale

Dans la suite de ce chapitre,KdésigneRouC.Définition 2.1 (Système linéaire)

Unsystème linéaire dennnéquations àpppinconnuesx1;:::;xpx1;:::;xpx1;:::;xpest un système

d"équations de la forme : (S) :8 >>>>>>>>>:a

11x1+a12x2++a1jxj++a1pxp=b1

a i1x1+ai2x2++aijxj++aipxp=bi a n1x1+an2x2++anjxj++anpxp=bn où lesaij,16i6n,16j6p, et lesbi,16i6n, sont des éléments fixés deKqui forment respectivementles coefficientset lesecond membredu système.9

2. Définition d"un système linéairea) Forme générale

Représentation matricielle(facultatif, voir chapitre "Matrices»)1Introduisons lestableauxde nombres suivants :

A=0 B @a 11a1p a n1anp1 C AX=0 B @x 1 x p1 C AB=0 B @b 1 b n1 C A: Le tableau "rectangulaire»Aest unematrice ànnnlignes etpppcolonnes, à coefficients dansK; la "colonne»Xest unematrice-colonneàplignes;

la "colonne»Best unematrice-colonneànlignes.2Définissons formellement le"produit matriciel»deAparXselon

AX=0 B @a

11x1++a1pxp

a n1x1++anpxp1 C A: Résoudre le système(S)est équivalent àrésoudre l"équation matricielleAX=BAX=BAX=B d"inconnueX, les matricesAetBétantfixées.10

2. Définition d"un système linéaireb) Opérations

Définition 2.2

On appellesolutiondu système(S)toutp-uplet(x1;:::;xp)2Kpqui satisfait aux équations du système. Lorsque(b1;:::;bn) = (0;:::;0), le système(S)est dithomogène.

Deux systèmes(S)et(S0)sont ditséquivalentss"ils ont les mêmes solutions.Proposition 2.3 (Opérations équivalentes)

On obtient un système(S0)équivalentau système(S)si on applique à ce dernier l"une des opérations suivantes :

échangede deux lignes (on noteLi !Lj);

multiplicationd"une ligne par un coefficientnon nul(on noteLi Li); ajoutà une ligne d"un multiple d"une autre (on noteLi Li+Lj), et plus généralementajoutà une ligne d"unecombinaison linéairedes autres (on noteLi Li+P j6=i jLj).11

Sommaire

1Exemples préliminaires

2Définition d"un système linéaire

3Méthode du pivot de Gauss

Description

Système échelonné

Résolution

Discussion

Exemple de synthèse

3. Méthode du pivot de Gaussa) Description

Description d"une méthode de résolution

On va décrire laméthode du pivot de Gausspour résoudre un système de la forme :

8>>>>>>><

>>>>>>:a

11x1+a12x2+a13x3++a1pxp=b1

a

21x1+a22x2+a23x3++a2pxp=b2

a

31x1+a32x2+a33x3++a3pxp=b3

a n1x1+an2x2+an3x3++anpxp=bn1Choix du pivot : Sitousles coefficientsaijsontnuls, et sib1=b2==bn=0, tous les p-uplets d"éléments deKsont solutions :S=Kp. Sitousles coefficientsaijsontnuls, et sil"un au moinsdesbiestnon nul, alors le système n"admet pas de solution :S=?. Si l"undes coefficientsaijestnon nul, on peut le choisir commepivot. Quitte à échanger lignes et/ou colonnes, on peut supposer par exemple a

116=0.12

3. Méthode du pivot de Gaussa) Description

2On utilisea11commepivotpour " éliminer »x1des lignesL2àLn, à l"aide des

opérationsLi Liai1a 11L1. On obtient alors un système de la forme :8>>>>>>>< >>>>>>:a

11x1+a12x2+a13x3++a1pxp=b1

a

022x2+a023x3++a02pxp=b02L2 L2a21a

11L1 a

032x2+a033x3++a03pxp=b03L3 L3a31a

11L1 a

0n2x2+a0n3x3++a0npxp=b0nLn Lnan1a

11L13On recommence la même démarche sur les lignesL2àLn(en supposant

a

0226=0) :8>>>>>>>><

>>>>>>>:a

11x1+a12x2+a13x3++a1pxp=b1

a

022x2+a023x3++a02pxp=b02

a

0033x3++a003pxp=b003L3 L3a032a

022L2
a

00n3x3++a00npxp=b00nLn Lna0n2a

022L24On recommence ce procédé jusqu"à l"obtention d"un systèmeéchelonné:13

3. Méthode du pivot de Gaussb) Système échelonné

Proposition 3.1 (Triangularisation)

Tout système linéaire ànéquations etpinconnues est équivalent à un système de la

forme suivante pour un certain entierr6min(n;p):8>>>>>>>>>>>>>>< >>>>>>>>>>>>>:b

11y1+b12y2++b1ryr++b1pyp=c1

b

22y2++b2ryr++b2pyp=c2

b rryr++brpyp=cr0=cr+1 0=cn où les inconnuesy1;:::;ypsont les mêmes quex1;:::;xpmais éventuellement dans un ordre différent, et où lesb11;:::;brrsont tousnon nuls.

Lorsquer Le nombrerde coefficients diagonauxbiinon nuls estindépendantdes opérations effectuées pour arriver à cette forme du système, et s"appelle lerangdu système.14

3. Méthode du pivot de Gaussc) Résolution

5Analyse de la compatibilité du système :

Sin>ret sil"un au moinsdesci,r+16i6nestnon nul, le système est incompatible, et l"ensemble des solutions est?. Sin>ret sitousles coefficientsci,r+16i6nsontnuls, ou sin=r, le système estcompatible, et admet au moins une solution. Lesrpremières équations constituent unsous-système principal, lesrinconnuesyj;16j6r, sont appeléesinconnues principalesdu système,

et, lorsquep>r, lesprinconnuesyj,r+16j6p,inconnues auxiliaires.6"Remontée» du système principal:

On résout alors le systèmeprincipal"en partant du bas», et les inconnues principalesy1;:::;yrs"expriment en fonction des inconnuesauxiliaires y r+1;:::;yp:

8>>>>><

>>>>:b

11y1+b12y2++b1ryr=c1b1r+1yr+1 b1pyp

b

22y2++b2ryr=c2b2r+1yr+1 b2pyp

b rryr=crbrr+1yr+1 brpyp~ wwww15

3. Méthode du pivot de Gaussd) Discussion

Système échelonné

En pratique, on ne cherche pas toujours à obtenir des coefficients diagonaux tous

non nuls, mais plutôt à obtenir un systèmeéchelonné, c"est-à-dire où chaque ligne

contientau moins "un zéro de plus»que la précédente "en partant de la gauche», jusqu"à ce que les premiers membres soient nuls. Cela évite d"échanger les inconnues. Dans un systèmeéchelonné,le nombrerd"équations dont le premier membre est non nulest égal aurangdu système.Proposition 3.3 (Nombre de solutions)

Un système linéaire admet soit

aucunesolution (r3. Méthode du pivot de Gausse) Exemple de synthèse

Exemple 3.5

Fixons deux réelsaetb. Considérons le système de trois équations à quatre inconnues suivant : (S) :8 :x+2y+3z+4t=1E1

2x+ (a+2)y+ (a+4)z+ (2a+4)t=b E2

4x+ (a2+4)y+ (2a2+4)z+ (3a2+4)t=a2E3Résolution

On débute la méthode du pivot en choisissant par exemple comme première

équationE1et première inconnuex:

(S)()8 :x+2y+3z+4t=1E 1 (a2)y+( a2)z+( 2a4)t=b2E

02=E22E1

(a24)y+( 2a28)z+( 3a212)t=a24E

03=E24E1

()(S0) :8 :x+2y+3z+4t=1E 1 (a2)(y+z+2t)= b2E 02 (a24)(y+2z+3t)= a24E 0317

3. Méthode du pivot de Gausse) Exemple de synthèse

Exemple 3.5

Fixons deux réelsaetb. Considérons le système de trois équations à quatre inconnues suivant : (S) :8 :x+2y+3z+4t=1E1

2x+ (a+2)y+ (a+4)z+ (2a+4)t=b E2

4x+ (a2+4)y+ (2a2+4)z+ (3a2+4)t=a2E3Discussion

Sia=2 :

(S0)()8 :x+2y+3z+4t=1E 1 0=b2E 02 0=0E 03

On obtient un système constitué d"uneéquation principaleE1d"inconnueprincipalexet de deux équations decompatibilité0=b2et 0 =0.

Sib6=2, le système estincompatible, il n"y a pas de solution. Sib=2, les équations decompatibilitéE02etE03sont redondantes et le système(S)est équivalent àE1, il est derang1. En récrivantE1selonx=12y3z4t, le système(S)admet une infinité de solutions données par

S=f(12y3z4t;y;z;t);(y;z;t)2R3g:17

3. Méthode du pivot de Gausse) Exemple de synthèse

Exemple 3.5

Fixons deux réelsaetb. Considérons le système de trois équations à quatre inconnues suivant : (S) :8 :x+2y+3z+4t=1E1

2x+ (a+2)y+ (a+4)z+ (2a+4)t=b E2

4x+ (a2+4)y+ (2a2+4)z+ (3a2+4)t=a2E3Discussion

Sia6=2 :

on simplifieE02etE03en les divisant para2 puis l"on poursuit la triangularisation: (S0)()8 :x+2y+3z+4t=1E 1 y+z+2t=b2a2~

E02=1a2E02

(a+2)(y+2z+3t)= a+2~

E03=1a2E03()(S00) :8

:x+2y+3z+4t=1E 1 y+z+2t=b2a2~ E02 (a+2)(z+t)= ( a+2)aba2E

003=~E03(a+2)E0217

3. Méthode du pivot de Gausse) Exemple de synthèse

Exemple 3.5

Fixons deux réelsaetb. Considérons le système de trois équations à quatre inconnues suivant :quotesdbs_dbs44.pdfusesText_44
[PDF] résolution d'un convertisseur analogique numérique

[PDF] pas de quantification can

[PDF] filetage si

[PDF] education thérapeutique du patient formation

[PDF] etp définition

[PDF] le hasard et la nécessité monod

[PDF] le hasard et la nécessité citations

[PDF] le hasard et la nécessité analyse

[PDF] le hasard et la nécessité democrite

[PDF] contrat orange

[PDF] equation produit nul seconde exercice