[PDF] ECE 3300 INPUT IMPEDANCE Input Impedance Zin (z) = V(z) / I(z





Previous PDF Next PDF



2 Lecture 2

(Zi ? ¯Z)2 + n. ¯. Z2. (27). (b). ? n. ¯. Z is a standard normal random variable;. (c) n. ¯. Z2 has a chi square distribution with one degree of freedom;.



Topic 7 Notes 7 Taylor and Laurent series

an(z ? z0)n. There is a number R ? 0 such that: 1. If R > 0 then the series converges absolutely to an analytic function for 





ECE 3300 INPUT IMPEDANCE Input Impedance Zin (z) = V(z) / I(z

Lmin = ( -(2n+1)? + ? r ) / 2?. First minima at n=0. Voltage Standing Wave Ratio (VSWR):. S =



DIVISIBILITY AND FACTORIZATION OF GAUSSIAN INTEGERS

integer such that Z = z2z. Theorem 1. If ZiZ2 = zZ) then N(zi)N(z2). = N(zt). Let zi = a + bi and z2 = c + di. Then we write zZ% = (a + bi) (c + di).



The Epstein-Zin Stochastic Growth Model?

19-Oct-2005 The Epstein-Zin class of preferences can be summarized by ... and we consume everything: c = z (k )? with (say) log z ? N(0?2).



~N÷I Z-I) - M(N

http://www.sciencedirect.com/science/article/pii/0031916365909534/pdf?md5=753840221ce22e2833fa5e0bbd29b0c6&pid=1-s2.0-0031916365909534-main.pdf



Transmission Line Input Impedance

26-Jan-2005 Note Zin equal to neither the load impedance ZL nor the characteristic impedance Z0 ! 0 and in in. L. Z. Z.



Semi-parametric Random Censorship Models

the ordered Z?sample and ?[1:n]



[PDF] Nombres complexes

Un est l'ensemble des solutions de l'équations Zn = 1 Il faut maintenant exprimer z en fonction de Z On vérifie d'abord que Z ne peut être égal à 1 parce 



[PDF] NOMBRES COMPLEXES

On ne peut donc pas comparer deux nombres complexes : il n'y a pas de relation d'ordre dans CI On ne peut donc pas dire qu'un nombre complexe z est 



[PDF] Les complexes - Exo7 - Exercices de mathématiques

Exercice 17 **I On considère l'équation (E) : (z-1)n -(z+1)n = 0 où n est un entier naturel supérieur ou égal à 2 donné 1 Montrer que les solutions de (E) 



[PDF] Feuille 5 : Nombres complexes (correction)

z =(4+5i)(5 + 3i)(1 ? 2i) d) z = 4 ? 3i 5+2i e) z = n ? k=0 cos(k?) et Vn = n ? k=0 sin(k?) Correction exercice 5-9 Un + iVn = n



[PDF] NOMBRES COMPLEXES (Partie 2) - maths et tiques

Propriétés : Soit z et z ' deux nombres complexes a) z 2 = zz b) z = z c) ?z = z Démonstrations : 0 n'a pas d'argument car dans ce cas l'angle u



nombres complexes: (z+i)^n = (z-i)^n - forum mathématiques - 19017

((z+i)/(z-i))^n=1 si on prend Z=(z+i)/(z-i) on Z^n=1 je pense que tu sais resoudre ceci : c'est Z=e^(2i*k*pi/n) k=0 n-1



résoudre une équation (z-1)^5=(z+1)^5 • racine n-ième - YouTube

16 jui 2021 · http://www jaicompris com/lycee/math/ exercice très complet: résoudre une équation (z-1)^5=(z+1 Durée : 12:24Postée : 16 jui 2021



[PDF] Exo7 - Exercices de mathématiques

Z ZZ Exo7 Table des matières 1 100 01 Logique 13 2 100 02 Ensemble 10 f n'a jamais les mêmes valeurs en deux points distincts ;



[PDF] NOMBRES COMPLEXES - EXERCICES CORRIGES ( ) ) ( ) ( ) ) ( )

Exercice n°3 Résoudre dans ? : 1) Les équations ( ) 5 2 1 3 z i i z + = + ? et 4 1 z i i z ? = + 2) Le système d'inconnues complexes 1z et

:

ECE 3300 INPUT IMPEDANCE

Input Impedance

Z in (z) = V(z) / I(z) Zin(z) is ratio of TOTAL voltage V(z) and current I(z) on line. Zo is ratio of forward or negative traveling wave Vo + / Io+ or Vo- / Io-

Zin (z) = V(z) / I(z)

= Vo + [e-jβ z + Γ ejβ z] / (Vo+ / Zo) [e-jβ z - Γ ejβ z]

Divide by e

-jβ z = Zo [ 1+ Γ ej2β z] / [ 1- Γ ej2β z] ohm

Zin(at the generator) = Zin( z= -l)

= Zo [ 1+ Γ e-j2β l] / [ 1- Γ e-j2β z] ohm

Using: e

jβ l = cos( βl) + j sin(βl) and e-jβ l = cos( βl) - j sin(βl)

Zin(-l) = Zo [ Z

L cos( βl) + j Zo sin(βl)] / [Zo cos( βl) + j ZL sin(βl)] = Zo [Z

L + j Zo tan(βl)] / [Zo + j ZL tan(βl)]

Voltage Divider for Input Voltage

Vin = Iin Zin = Vg Zin / (Zg + Zin)

Vin = V(-l) = Vo+ [ejβ l + Γ e-jβ l]

Solve for Vo

+ = [Vg Zin / (Zg + Zin)] / [ejβ l + Γ e-jβ l] Now we know the positive traveling wave based on the generator voltage!

Remember we found relation for Vo

- from Vo+ last time. Given the generator voltage and impedance and the load impedance, we can now completely solve for the voltages (and currents ) everywhere on the transmission line.

Example: Complete Solution

There is one example in your text. Here is a different one.

Given: a lossless transmission line

Zo = 50 ohms

Length = 90 meters

Vp = 3e8 m/s (air-filled transmission line)

Source: 2 GHz generator with R

g = 150 ohms connected to input terminal

Load: Output terminal left open R

L = ∞

λ = vp / f = 3e8 / 2e9 = 0.15 m

β = 2π / λ = 41.89 rad/m

Voltage Reflection Coefficient (at the load)

Γ = (∞ - 50) / (∞ +50) = 1 ?0

Input Impedance

Zin = Zo [ZL + j Zo tan(βl)] / [Zo + j ZL tan(βl)] = 0 - j 45 ohms

Generator voltage

vg (t) = 10 sin(ωt + 30°) volts convert to cosine vg (t) = 10 cos(ωt + (30-90) ° ) volts convert to phasor

Vg = 10 ?-60° volts

Input voltage (total voltage at input terminal)

Vin = Vg Zin / (Zin + Rg) = (4)( - j 45) / (- j 45 + 150) = 2.87 ?46.7° Volt

Magnitude of Forward-traveling wave

Vo + = Vin / [ejβ l + Γ e-jβ l] = 2.14 ?46.7° Volt |Vo + | may be <> |Vin |

Phasor (total) Voltage

V(z) = Vo+ [e-jβ z + Γ ejβ z] = 3.20 ?180° [e-jβ z + 1 ?0 ejβ z]

Instantaneous (total) Voltage

v(z,t) = Real [V(z) ] = 3.20 cos( ωt - βz + 180°) + 3.20 cos(ωt + βz + 180°) volts

Phasor (total) Current

I(z) = ( Vo+ / Zo) [e-jβ z - Γ ejβ z]

= ( 3.20 ?180° / 50 ) [e-jβ z - 1 ?0 ejβ z] = 0.64 ?180° [e-jβ z - ejβ z]

Instantaneous (total) Current

i (z,t) = 0.64 cos(ωt - βz + 180°) + 0.64 cos(ωt + βz + 180°) amps

Electrical Length

Why did Zin = Zo? Because line is electrically so long that generator doesn't "see" the load. Electrical Length = length / wavelength = 900 meters / .15 meters = 6000 wavelengths long.

What if this generator had been a battery? (DC)

Then wavelength = ∞

β = 0

tan(βl) = 0

Zin = Zo [Z

L + j Zo tan(βl)] / [Zo + j ZL tan(βl)]

= 50 [∞ + 0] / [50 + 0] = ∞ = ZL! The line is electrically so SHORT that it is invisible, and the input impedance of the line is the load. This is exactly what happens when you are considering "ordinary" (low frequency) circuits.

Transient Effects

Does this mean there will be NO reflection?? No. There will be a reflection, when the wave finally reaches the end. BUT? Our cos functions show the incident and reflected waves simultaneously. There is no 6000 cycle delay shown here! That's because the phasor solution is a STEADY STATE solution. Transients and transient effects are not shown. Are transient effects important? Yes. We'll learn about them next week.

Summary of Lossless Transmission Lines

Lossless Transmission Line

R'<<ωL', G'<<ωC'

γ = α + j β = jω ⎷ (L'C')

α = 0

β = ω ⎷ (L'C')

Zo = ⎷ (L'/C')  strictly real

λ = 2π / β = 2π / ω ⎷ (L'C')

v p = ω / β = 1/ ⎷ (L'C')

For TEM line:

L'C' = με (properties of insulation material)

Lossless TEM line:

v p = 1/ ⎷ (με) = co / ⎷ εr

λ = vp /f = λ o / ⎷ εr

Phasor (total steady-state) voltage and current

V(z) = Vo+ e-jβ z + Vo- ejβ z

= Vo + e-jβ z + Γ Vo+ ejβ z

I(z) = (Vo+ /Zo )e-jβ z - (Vo- /Zo) ejβ z

= (Vo+ /Zo ) [ e-jβ z - Γ ejβ z ]

Voltage and Current at Load

Z L = VL / IL = [ (Vo+ + Vo- ) / (Vo+ - Vo- ) ] * Zo

VL = V(z=0) = Vo+ + Vo-

I

L = I(z=0) = Vo+ / Zo - Vo- / Zo

Voltage Reflection Coefficient (at load)

Γ = Vo- / Vo+

= [(Z

L - Zo) / (ZL + Zo)]

= (Z

L /Zo -1) / (ZL /Zo +1)

= |Γ | ? θ r = |Γ | e jθ r = (S-1) / (S+1)

Current Reflection Coefficient (at load)

Io- / Io+ = - Vo- / Vo+ = - Γ

Magnitude of voltage maxima:

| V(z)| max = | Vo+| [1 + |Γ | ]

Location of voltage maxima:

-z = lmax = (θ r λ / 4π + nλ / 2) for n=1,2,... if θ r <0; n=0,1,2,... if θ r ≥ 0

First voltage Maximum: Lmax = θ r λ / 4π

Location of voltage minima:

Lmin = ( -(2n+1)π + θ r ) / 2β

First minima at n=0.

Voltage Standing Wave Ratio (VSWR):

S = | V | max / | V | min = (1 + |Γ | ) / (1 - |Γ | ) dimensionless

Input Impedance

Z in (z) = V(z) / I(z) = Zo [ 1+ Γ ej2β z] / [ 1- Γ ej2β z] ohm

Zin(at the generator) = Zin( z= -l)

= Zo [ 1+ Γ e-j2β l] / [ 1- Γ e-j2β z] ohm = Zo [Z

L + j Zo tan(βl)] / [Zo + j ZL tan(βl)]

Input Voltage

Vin = Iin Zin = Vg Zin / (Zg + Zin)

Vin = V(-l) = Vo+ [ejβ l + Γ e-jβ l]

Positive-traveling wave

Vo + = [Vg Zin / (Zg + Zin)] / [ejβ l + Γ e-jβ l]

Negative-traveling wave

Vo - = [(ZL - Zo) / (ZL + Zo)] * Vo+quotesdbs_dbs44.pdfusesText_44
[PDF] état d'agrégation définition

[PDF] condensation solide

[PDF] exemple de sublimation

[PDF] fluide frigorigène

[PDF] récit policier exemple

[PDF] norme photo visa canada

[PDF] photo format passeport canada

[PDF] programmation linéaire dualité exercices corrigés

[PDF] photo immigration canada

[PDF] photo visa canada maroc

[PDF] photo visa canada 2016

[PDF] probleme dual

[PDF] photo citoyenneté canadienne

[PDF] photo visa canada 2017

[PDF] photo visa touriste canada