[PDF] LES LOGARITHMES on sait que l'on





Previous PDF Next PDF



Logarithmes

La fonction logarithme décimal notée log





What is a logarithm? Log base 10

For our purposes it doesn't much matter what the two functions are but we can see that if we graph both A and B on the same plot



COURS CORRIGE I) FONCTION LOGARITHME DECIMAL.

1) Trouver la touche log de votre calculatrice et calculer log 3 ? 0477(valeur log ab = log a + log b log (104 x 105) = 9 = log 104 + log 105 log.



LES LOGARITHMES

on sait que l'on doit calculer log a – log b. On répugne généralement à effectuer des soustractions. Pour les éviter on remplace un logarithme négatif par son 



6.2 Properties of Logarithms

Theorem 6.3. (Inverse Properties of Exponential and Log Functions) Let b > 0 b = 1. • ba = c if and only if logb(c) = a. • logb (bx) = x for all x and 



LOGARITHME NEPERIEN

On note a = ln b ce qui se lit logarithme népérien de b . ln a + ln b ln 10. = ln a ln 10. + ln b ln 10. = log a + log b. • log 1.



Untitled

Algebra 2/Trg. B. Period. Date: 1. The expression log 3r is equivalent to. (1) (log 3)(log x). (3) log 3 + log z. (2) 3 log r. (4) log (3 + x).



Log-Log Plots

11 mars 2004 In each case give the gradient and the intercept on the log(y) axis. (Click on the green letters for the solutions). (a) y = x. 1. 3. (b) y ...



Linear Regression Models with Logarithmic Transformations

17 mars 2011 7. log(A/B) = logA? logB. 8. eAB = eA. B. 9. eA+B = eAeB. 10. eA?B = eA/eB. 2 Why use logarithmic transformations of variables.



[PDF] Logarithmes

La fonction logarithme décimal notée log est la fonction qui à tout nombre réel strictement positif x associe y : x ? y = log ( x ) avec x = 10y



[PDF] LES LOGARITHMES

on sait que l'on doit calculer log a – log b On répugne généralement à effectuer des soustractions Pour les éviter on remplace un logarithme négatif par son 



[PDF] FONCTION LOGARITHME DÉCIMAL - maths et tiques

Cette solution se note log( ) Définition : On appelle logarithme décimal d'un réel strictement positif l'unique solution de l'équation 10I 



[PDF] LOGARITHME NEPERIEN - Pierre Lux

On note a = ln b ce qui se lit logarithme népérien de b On appelle fonction logarithme décimal et on note log la fonction définie sur ] 0 



[PDF] The laws of logarithms - Mathcentre

This law tells us how to add two logarithms together Adding log A and log B results in the logarithm of the product of A and B that is log AB For example 



[PDF] Exercices sur le logarithme décimal

Exercices sur le logarithme décimal 1 Soient a et b ? R?+ Simplifier: (a) log 01 · Ãa2rb2 a ! 3 a b3 (b) log µ 10a3b?2 a?a2b3 ¶3 µ a?4b3



[PDF] FONCTIONS LOGARITHMIQUES - AlloSchool

b) Résoudre l'équation : log ln a x a = ) S'appelle : la fonction logarithmique de base Exemples : 1)Pour: = on aura : ln log



[PDF] FONCTION LOGARITHME NÉPÉRIEN 1 Définition de la fonction « ln

La fonction log est définie et dérivable sur ]0 +?[ et log?(x) = 1 x ln(10) 2 La fonction log est strictement croissante sur ]0 +?[ car ln(10) > 0 3

:
1

LES LOGARITHMES

Introduction historique

Il est courant d"entendre parler de " calculs astronomiques » pour souligner la difficulté de certains calculs.

La référence à l"astronomie dans ce domaine n"est pas fortuite. Avant que ne soient inventées les calculettes ou les

ordinateurs, les astronomes ont toujours eu besoin d"effectuer des calculs longs et parfois délicats. Au temps de

Newton (1643-1727) ou de Halley (1656-1742), aucune machine automatique à calculer ne pouvait remplacer le

calcul " à la main ».

Un mathématicien, astronome et physicien écossais, John NAPIER (1550-1617), plus connu en France sous

le nom de NEPER, inventa un procédé de calcul très performant qu"utilisèrent tous ceux qui avaient des calculs

longs et fastidieux à effectuer. Cette méthode de calcul était encore enseignée en France il y a quelques années,

avant la généralisation des calculettes, en classe Terminale notamment.

Les logarithmes décimaux

L"idée était au départ de remplacer les multiplications par des additions et les quotients par des soustractions.

Pour cela on associe deux suites de nombres selon le schéma suivant :

1 = 10

0 → 0

10 = 10

1 → 1

100 = 10

2 → 2

1000 = 10

3 → 3

Remarque : La suite située à gauche des flèches (10

0, 101, 102, 103, ...) est une progression géométrique de raison

10, la suite située à droite (0, 1, 2, 3,...) est une progression arithmétique de raison 1. Le logarithme décimal appa-

raît alors comme une fonction qui permet d"associer une suite géométrique de raison 10 à une suite arithmétique

de raison 1. On étend le procédé aux puissances négatives de 10 :

0,1 = 10

-1 → -1

0,01 = 10

-2 → -2

0,001 = 10

-3 → -3

Courbe représentative

La fonction ainsi définie (appelée logarithme décimal ou logarithme vulgaire, et notée log ou log10) permet

de transcrire le tableau précédent de la manière suivante : log (1) = log (10

0) = 0

log (10) = log (10

1) = 1

log (100) = log (10

2) = 2

log (1000) = log (10

3) = 3

log (0,1) = log (10 -1) = -1 log (0,01) = log (10 -2) = -2 log (0,001) = log (10 -3) = -3

On peut être amené à construire la courbe représentative de cette fonction ; en voici l"allure :

2

Propriétés des logarithmes

1) On va retrouver ici la propriété fondamentale des logarithmes (isomorphisme) par un exemple simple :

On a vu que log (10) = 1, log (10

2) = 2 et log (103) = 3.

On sait par ailleurs que : 3 = 1 + 2 et 10

3 = 10 ×102

On peut donc écrire :

2321010log10log32110log10log

En résumé

()()()221010log10log10log´=+.

Cette propriété est générale et, si a et b sont des nombres réels strictement positifs

)log(loglogabba=+

2) Les autres propriétés des logarithmes se déduisent de celle-ci. Elles sont :

bab alogloglog-= (a et b sont strictement positifs) ananloglog= (a est strictement positif, n est un entier positif) ananlog1log= (a est strictement positif, n est un entier strictement positif)

3) Application à la recherche du logarithme d"un nombre strictement positif.

Pour les nombres qui ne sont ni 1, ni 10, ni 100 ..., on utilise une table de logarithmes qui fournit une partie

du logarithme du nombre (que l"on appelle mantisse). Ainsi : log 2 = 0,30 103

Le logarithme de 2 se compose de deux parties :

▪ une partie entière (0), qui indique l"ordre de grandeur du nombre (ici il est compris entre 1

et 10) ; c"est la caractéristique ; ▪ une partie décimale (30 103), qui porte le nom de mantisse et qui est lue sur la table. On peut déduire le logarithme de 20 de l"exemple précédent :

20 = 2 × 10

Donc, en employant la propriété fondamentale des logarithmes : log 20 = log (2 × 10) = log 2 + log 10 = 0,30 103 + 1 = 1,30 103 De façon plus générale, on obtient simplement les logarithmes suivants : log 200 = 2,30 103 log 2 000 = 3,30 103 Dans le cas des nombres inférieurs à 1 on aura : log 0,2 = log (2 × 10 -1) = log 2 + log (10-1) = 0,30 103 + (-1) = -0,69 897 3 Comme on le verra ci-dessous, ce dernier logarithme peut encore s"écrire : 10330,1.

Dans cette dernière écriture, la mantisse est positive et la caractéristique est algébrique. Son signe est indiqué

(lorsqu"il est négatif) au-dessus. Lorsqu"on effectue un calcul, on fait toujours la somme (arithmétique) des mantis-

ses et la somme algébrique des caractéristiques : cela permet d"accélérer considérablement les calculs.

Cologarithme

Dans le cas du calcul d"un quotient b

a on sait que l"on doit calculer log a - log b.

On répugne généralement à effectuer des soustractions. Pour les éviter, on remplace un logarithme négatif

par son cologarithme qui est défini de la manière suivante : on change de signe la caractéristique et on lui ajoute -1

(écrit sous la forme

1), puis on retranche tous les chiffres de la mantisse à 9 et le dernier de droite à 10, ainsi :

2log89769,110330,02log2

1logco==-=-=

Conséquences pratiques

La propriété fondamentale des logarithmes montre que pour effecteur un produit ab de deux nombres stric-

tement positifs, il suffit d"ajouter leurs logarithmes.

Exemples

1) Calculer, en utilisant une table de logarithmes décimaux à 5 décimales, le produit suivant :

P = 21 × 86

On dispose les calculs selon le schéma suivant : log 21 = 1,32 222 log 86 = 1,93 450

On lit sur la table :

3,25 672 = log 1 806

donc P = 1 806

Remarque

Si l"on effectue le calcul à la main, on

trouve bien que 21 × 86 = 1 806. 1,32 222 + 1,93 450

3,25 672

2) Calculer, en utilisant une table de logarithmes décimaux, l"expression suivante :

M =

375574,25

12´

log 25,75 = 1,41 078 log (5

12) = 8, 38 764

29871,23751log=

log M = 8,51 140

M » 3,2445 × 10

8

Remarque

Si l"on effectue le calcul avec un

ordinateur, on trouve que

M » 3,245 136 43 × 10

8 log 5 = 0,69 897 d"où 12 log 5 = 12 × 0,69 897 = 8,38 764

log 375 = 2, 57 403 d"où

40357,22

1375log´= = 1,28 702

et enfin

29871,2375log3751log==co

4

Autres utilisations

1) Les logarithmes décimaux interviennent dans de nombreuses formules de physique, notamment en astro-

physique, avec l"expression de la magnitude absolue d"une étoile :

CLM+-=log5,2 où L est la luminosité de

l"étoile et C une constante.

2) Certaines représentations graphiques de fonctions présentent la particularité d"avoir une très grande éten-

due de valeurs à placer en abscisse (ou en ordonnée). Pour rendre de tels graphiques lisibles, on utilise des repré-

sentations semi-logarithmiques. Ainsi la transmission du rayonnement électromagnétique dans l"atmosphère subit-

elle des variations très différentes, suivant que l"on se trouve dans le domaine des très courtes longueurs d"onde (le

nanomètre) ou dans le domaine métrique. Pour pouvoir représenter l"ensemble du phénomène, on utilise en abscis-

se une échelle logarithmique pour décrire l"ensemble des longueurs d"onde. Exemple de graphique utilisant une échelle logarithmique en abscisse : la trans- mission atmosphérique suivant le domaine de longueur d"onde.

3) D"autres utilisations des logarithmes ont accompagné les études de ceux qui s"adonnaient aux " sciences

exactes » : les fameuses règles à calcul.

Leur principe repose aussi sur les logarithmes : les graduations sont faites en logarithmes. Pour multiplier

deux valeurs, on additionne des longueurs. Un curseur mobile sert à effectuer des lectures. Les ordres de grandeur

devaient être évalués mentalement.quotesdbs_dbs44.pdfusesText_44
[PDF] resoudre systeme avec ln

[PDF] toutes les écritures comptables pdf

[PDF] manhattan kaboul instruments

[PDF] premiere professionnelle apres seconde generale

[PDF] casio fx 92 college mode d'emploi

[PDF] griffith's improved vacuum apparatus for removing dust from carpets

[PDF] evolution de l'aspirateur au cours du temps

[PDF] frise chronologique de l'aspirateur

[PDF] aspirateur 1920

[PDF] evolution de l'aspirateur

[PDF] aspirateur 1950

[PDF] aspirateur 1905

[PDF] evolution du balai

[PDF] equation fonction

[PDF] équation fonctionnelle