[PDF] Puissances Racines Exponentielles et Logarithmes 2MStand/Renf





Previous PDF Next PDF



FONCTION LOGARITHME NEPERIEN (Partie 1)

solution de l'équation ex = a. On la note lna . La fonction logarithme népérien notée ln



FONCTION LOGARITHME

Or 4 ? I et –1 ? I



Equations logarithmiques et exponentielles log x et a sont des

Résoudre dans ! l'équation log. 2 x + 1 = 0. On réécrit l'équation sous la forme log Transformons chaque terme en un logarithme sachant que log.



FONCTION LOGARITHME DÉCIMAL

permettant de simplifier les calculs opératoires : le logarithme. Neper construit le mot à partir des Méthode : Résoudre une équation ou une inéquation.



Exercices sur le logarithme décimal

Résoudre dans R les équations suivantes: (a) log x = 1. (b) log x = 3. (c) log x = ?4. (d) log(x + 4) + log x = 0. (e) log(x + 3) + log(x + 5) = log 15.



FONCTION LOGARITHME NEPERIEN

solution de l'équation ex = a. La fonction logarithme népérien notée ln



Fonction logarithme népérien

La fonction logarithme népérien notée ln



Fiche 3 : Exponentielles logarithmes

https://www.studyrama.com/IMG/pdf/exercice_maths_S_03.pdf



Puissances Racines Exponentielles et Logarithmes 2MStand/Renf

Analyser la résolution d'équation suivante : x2 “ 4



Résoudre une équation exponentielle en utilisant la forme

D Quelles sont les lois des logarithmes ? D Comment passer de la forme exponentielle à la forme logarithmique. (comment utiliser la relation y = logb(x) ?? by 



[PDF] FONCTION LOGARITHME NEPERIEN (Partie 1) - maths et tiques

Définition : On appelle logarithme népérien d'un réel strictement positif a l'unique solution de l'équation ex = a On la note lna La fonction logarithme 



[PDF] FONCTION LOGARITHME NEPERIEN - maths et tiques

Définition : On appelle logarithme népérien d'un réel strictement positif a l'unique solution de l'équation ex = a On la note lna La fonction logarithme 



[PDF] FONCTION LOGARITHME NEPERIEN EXERCICES CORRIGES

3) Ecrire les nombres A et B à l'aide d'un seul logarithme : 1 2ln3 ln2 ln Précisez l'ensemble de définition puis résoudre les équations suivantes :



[PDF] FONCTION LOGARITHME

Méthode : Pour résoudre une équation du type ln u(x) = ln v(x) (respectivement une inéquation du type ln u(x) ? ln v(x) ) :



[PDF] ( ) ( ) ( ) TD+CORRECTIONS-FONCTIONS LOGARITHMIQUES

Exercice2 : Résoudre dans ? les équations et inéquations suivantes : 1) ( ) b) Résoudre l'équation : Où log est le logarithme décimal



[PDF] EXERCICES ET ACTIVITés sur les fonction logarithme népérien

Equations 1 Résoudre l'équation lnx = 2 : a Graphiquement à 10?1 grâce à la courbe donnée ci dessous 0



[PDF] fonction-logarithme-exercicepdf - Jaicompris

Résoudre des équations avec des logarithmes et exponentielles Résoudre dans R les équations suivantes : a) ln x = 4 b) ln(2 ? x) = 0 c) ln x = ?1



[PDF] Equations logarithmiques et exponentielles - x et a - Mac for Math

ou log a x = log a y Pour ce faire il est souvent utile d'utiliser les propriétés des fonctions logarithmes Résoudre dans ! l'équation 3 1-x



[PDF] Exercices de résolutions déquations avec le logarithme népérien

Terminale ES – Équations avec des logarithmes et des exponentielles – 1/6 Or il ne s'agit pas de la résoudre dans mais dans +? car pour tout x de 



[PDF] La fonction logarithme - Lycée dAdultes

13 déc 2016 · Équation et inéquation Exercice 3 Résoudre les équations suivantes en précisant auparavant leur ensemble de validité : 1) ln(2 ? 2x) = 1

  • Comment résoudre une équation avec des logarithme ?

    Méthode : Pour résoudre une équation du type ln u(x) = ln v(x) (respectivement une inéquation du type ln u(x) ? ln v(x) ) : – on détermine l'ensemble des réels x tels que u(x) > 0 et v(x) > 0 (dans ce cas l'équation est bien définie) ; – on résout dans cet ensemble l'équation u(x) = v(x) (respectivement l'inéquation u(
  • Comment résoudre une équation de ln ?

    La fonction logarithme décimale se note comme suit : log(x) = ln(x)/ln(10). Ses propriétés algébriques sont similaires à celles du logarithme népérien, noté lui, "ln". Pour tout x > 0 et pour tout y ? R, log(x) = y <=> x = 10y ou encore log(10y) = y.

Puissances, Racines

Exponentielles et Logarithmes

2M

Stand/Renf

Jean-Philippe Javet

http://www.javmath.ch

Table des matières

1 Puissances et Racines 1

1.1 Les puissances entières . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 1

1.1.1 Puissances à exposants entiers naturels . . . . . . . . . . .. . . . . . . . . . 1

1.1.2 Puissances à exposants entiers relatifs . . . . . . . . . . .. . . . . . . . . . . 2

1.1.3 La notation scientifique . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4

1.2 Les racines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 5

1.2.1 La définition d"une racine... mal définie? . . . . . . . . . . .. . . . . . . . . 8

1.2.2 Des bons réflexes qui sauvent la ... fin des calculs . . . . .. . . . . . . . . . 9

1.3 Puissances à exposants rationnels . . . . . . . . . . . . . . . . . .. . . . . . . . . . 11

1.4 Puissances à exposants réels . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 14

2 Fonctions et équations exponentielles 15

2.1 Deux exemples en introduction . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 15

2.2 Fonctions exponentielles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 16

2.3 Équations exponentielles (Début) . . . . . . . . . . . . . . . . . .. . . . . . . . . . 18

2.4 Une première application des fcts exponentielles . . . . .. . . . . . . . . . . . . . . 20

2.5 Le nombre d"Euler : e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 21

3 Logarithmes 25

3.1 Logarithme en base 10 (ou logarithme décimal) . . . . . . . . .. . . . . . . . . . . 25

3.2 Logarithme en basea(a>0 eta‰1) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Logarithme en base e (ou logarithme naturel) : . . . . . . . . .. . . . . . . . . . . . 27

3.4 Propriétés des logarithmes . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 28

3.5 Formule du changement de base . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 36

3.6 Un petit retour aux équations exponentielles . . . . . . . . .. . . . . . . . . . . . . 37

4 Quelques applications concrètes 39

4.1 Applications concrètes des exp et des log . . . . . . . . . . . . .. . . . . . . . . . . 39

A Bibliographie 45

I II

A Quelques éléments de solutions I

A.1 Les Puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . I A.2 Fonctions et équations exponentielles . . . . . . . . . . . . . .. . . . . . . . . . . . V A.3 Logarithmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . VI A.4 Quelques applications concrètes des exp et log. . . . . . . .. . . . . . . . . . . . . . IX

Malgré le soin apporté lors de sa conception, le polycopié que vous avez entre les mains contient certainement

quelques erreurs et coquilles. Merci de participer à son amélioration en m"envoyant un mail : javmath.ch@gmail.com

Merci;-)

1

Puissances et Racines

1.1 Les puissances entières

1.1.1 Puissances à exposants entiers naturels

Définition:SoitaP?etnP?°. On appellepuissancen-ième deaouaà la puissancen, le produit denfacteurs dea. En d"autres termes : a n"a¨a¨...¨aloooooomoooooon nfacteurs Le nombreas"appellela basede la puissance et le nombrens"ap- pellel"exposantde la puissance.

Exemple 1:Calculer les expressions :

a)54"b)ˆ ´1 2 3 b)pamqn"am¨n

•p42q3"4...

c)pa¨bqn"an¨bn

•34¨24"...4

d) ´a b¯ n"anbn, sib‰0•ˆ23 3 e) am an"$""&""%a m´n, simąn

1 , sim"n

1 an´m, simăn

•3734"...

34

37"...

1

2 CHAPITRE 1. PUISSANCES ET RACINES

Exercice 1.1:Calculer sans machine :

a)p22q3b)2p23qc)p23q2 d)23´32e)32`34f)103`102 g) ˆ1 3 4 h)ˆ

´25

3 i)ˆ

´52

4 j)

24k)`?56l)ˆ

´1?3

8

Question:23"8... Mais que pourrait valoir 2´3?

1.1.2 Puissances à exposants entiers relatifs

Définition:Nous allons étendre la notion de puissances à exposants entiers positifs non nuls (i.e.nP ?°) aux puissances à exposants entiers (i.e.nP ?), de façon à conserver les propriétés déjà mentionnées : a m¨an"am`n (avecaP?°)

•sim"0

a

0¨an"a0`n

a

0¨an"an

a 0"1

Ainsi :a0"1

•sim" ´n

a

´n¨an"a´n`n

a

´n¨an"a0

a

´n¨an"1

a

´n"1

an

Ainsi :a´n"1

an "Remarquons que sia"0 , l"expression 00"1.

Exemple 2: a)4´3"

b) ´2 5 ´3

Nouvelles propriétés:À la liste des propriétés précédentes, on peut alors compléter :

e) am an"am´n•5759"5... f) ´a b¯

´n"ˆba

n•ˆ23 ´2 2

CHAPITRE 1. PUISSANCES ET RACINES 3

Exercice 1.2:Calculer sans machine :

d)a´3¨a4e)2´3

32f)ˆ12

´2 Exemple 3:Compléter les écritures des expressions : a)2´3¨24"1

2...b)p2´3q´4"4...c)254´3"2...

d)

9´2

Exercice 1.3:Compléter les écritures des expressions suivantes : a)a3¨a4¨a5"a...b)pa3q4"1 a... c) a4 a5"a...d)3n¨32"3... e)5n`1¨5n´1"5...f)4n`3

44"ˆ14

g) an`1 a"a...h)pa3¨b4q2"a...b... i)

26¨49´1

k)a´4¨an`3"a...l)212¨7´3

63´2¨34"7...3...

m)ˆa´3 a´4 2 "a...n)ˆa3a4 ´2 "a...

4 CHAPITRE 1. PUISSANCES ET RACINES

1.1.3 La notation scientifique

Définition:Écrire un nombre réelxennotation scientifiquesignifie écrire ce nombre sous la forme : La notation scientifique a pour principal intérêt de simplifier l"écri- ture des calculs. Elle permet également d"estimer une réponse finale sans l"utilisation obligatoire d"une calculatrice. Exemple 4:Écrire les nombres ci-dessous en notation scientifique : a)Distance Terre - Lune :

384404000 m =

b)Masse d"un atome d"hydrogène :0,000"000"000"000"000"000"000"001"7 g = Le saviez-vous?:On désigne souvent les puissances de 10 avec un préfixe précédent les unités de mesure. Par exemple, on parle dekilomètres pour ex- primer 10

3mètres ou degigaoctets pour désigner 109octets.

Constatant qu"il n"existait aucun terme pour désigner10100, le ma- thématicien américain Edward Kasner (aux environs de 1938)créa le néologismegoogol. Kasner prétend que l"invention de ce mot est due à son neveu qui avait alors 9 ans. On peut néanmoins souligner que rien n"est, pour nous, égal au googol 1

"le nombre de cheveux estimé sur toutes les têtes de la popu-lation mondiale est d"environ :ŹEstimation :p1,25¨105q ¨ p7,15¨109q "............

ŹCalculatrice :p1,25¨105q ¨ p7,15¨109q "............ "le nombre de grains de sable dans le Sahara est estimé à :

8 millions de km

2

2 milliards de grains au m

2* Exercice 1.4:"Modern Times Forever", le plus long film jamais tourné est une production danoise datant de 2011 qui dure 240 heures. En supposant que la vitesse du film est de 24 images par seconde, calculer le nombre total d"images dans ce film. a)Estimer de tête la réponse. b)La calculer à l"aide de votre calculatrice.

1. Ce mot est repris plus tard par les fondateurs de Google pour nommer leur entreprise.

CHAPITRE 1. PUISSANCES ET RACINES 5

Exercice 1.5:

La Voie lactée, notre galaxie, ressemble à un disque. Elle est consti- tuée d"environ deux cents milliards d"étoiles, dont la plupart sont semblables au Soleil. Toutes ces étoiles tournent autour del"axe de rotation du disque. Le soleil se situe à2,5¨1017km du centre ga- lactique. Depuis sa naissance, il y a4,57milliards d"années, il a effectué une vingtaine de tours. La vitesse de révolution du Soleil autour de l"axe de la Voie lactée est-elle supérieure ou inférieure à celle d"un bolide de formule 1? Une estimation de tête peut suffire pour répondre à la question.

1.2 Les racines

Exercice 1.6:Vérifier avec la calculatrice ces étranges égalités : a)a

4`?12"1`?3

b)2a

2´?3"?6´?2

Comment pourrait-on les justifiersans calculatrice?

Définition:SoitaP?`etnP

?°. On appelleracinen-ième dea, notén?a, l"unique nombrerpositif tel quern"a. En d"autres termes : r"n? aðñrn"aetrě0 Le nombreas"appellele radicande, le nombrens"appellel"indice et n? s"appellele radical. a)Dans le cas oùn"1, on a1? a"a. b)Dans le cas oùn"2, la racine 2-ième s"appelleracine carrée et se note? au lieu de2?. c)Dans le cas oùn"3, la racine 3-ième s"appelleracine cu- bique. Exemple 5:a)1?7"...car ........................... b) 4?

81"...car ...........................

Question:Que peut valoir3?´8 ou plus généralement qu"en est-il den?asia est négatif? Il s"agit alors d"étendre la définition pour desvaleurs deaă0 : Définition:"Siaă0 etnest unentier impair, on définit la racinen-ième par : r"n? aðñrn"a "siaă0 etnest unentier pair, la racinen-ième dean"est pas définie.

6 CHAPITRE 1. PUISSANCES ET RACINES

Exemple 6:a)3?´8" ´2 carp´2q3" ´8

b) 4? ´16 n"est pas définie dans l"ensemble des nombres réels2.

Exercice 1.7:Calculer sans machine :

a)

0b)?625c)?0,04

d)a

0,0009e)a0,0016f)a0,000004

quotesdbs_dbs44.pdfusesText_44
[PDF] passer de bac pro a stmg

[PDF] comment résoudre f(x)=0

[PDF] resoudre equation f(x)=5

[PDF] resoudre equation f(x)=2

[PDF] résoudre f(x)=0 graphiquement

[PDF] ispits rabat site officiel

[PDF] decret de creation des ispits

[PDF] passerelle psychologie orthophonie

[PDF] métier psychologie sociale

[PDF] metier psychologie sans bac

[PDF] métier psychologie comportementale

[PDF] biomécanique ingénieur

[PDF] ingénieur biomécanique emploi

[PDF] ingénieur biomécanique formation

[PDF] passerelle medecine 2018