[PDF] 2.2 Quelques propriétés des intégrales définies





Previous PDF Next PDF



INTEGRALES I. Intégrale indéfinie Calculer lintégrale indéfinie d

L'intégrale définie de y = f(x) de a à b est égale à l'aire de la surface comprise entre la courbe représentant cette fonction l'axe des x et les deux 



Corrigé type de la Série 1 (les intégrales indéfinies calcul intégral)

On appelle intégrale indéfinie de la fonction f : I ?- ? R sur I qu'on Alors l'intégrale d'une fraction rationnelle revient à calculer 4 types d' ...



1 BROCHURE DEXERCICES DANALYSE 2 Intégrale indéfinie

Calcul intégral. L'intégrale indéfinie est le problème inverse de la recherche de la dérivée d'une fonction donnée. §1. Primitives 





CHAPITRE 2 Intégration I) Définition dune intégrale Lintégration est

I) Définition d'une intégrale. L'intégration est liée au problème du calcul d'une surface délimité par la courbe d'une fonction définie sur un segment [ 



SUR LE DÉVELOPPEMENT DE LA NOTION DINTÉGRALE

dite définie lorsqu'il s'agissait d'un intervalle (ab) donné



Quelques formules générales relatives aux intégrales définies et

différant que par leurs limites. On en déduit immédiate- ment la relation (7) entre des intégrales indéfinies; dé- signant par l(x) l'intégrale indéfinie /.



CHAPITRE 2 Intégration Lintégration est liée au problème du calcul

On appelle primitive d'une fonction définie sur le segment [ ]



calcul différentiel et intégral notes de cours

graphique en tant qu'aire sous une courbe puis celle d'intégrale indéfinie ainsi que le lien entre ces deux notions: le théorème fondamental du calcul.



BROCHURE DEXERCICES DANALYSE MATHEMATIQUE 2

Calcul intégral. Page 3. 2. BROCHURE D'ANALYSE 2. Intégrale indéfinie et intégrale définie avec réponses 

Définition2.4.(Intégrabili téausensdeR iemann)Unefonc tionréellef:[a,b]Restdite intégrablesur[a,b],si ??>0,?f 1 ,f 2 :[a,b]Rfonctionsenescalierstell esque : 1.f 1 ?f?f 2 (i.e.?x?[a,b],f 1 (x)?f(x)?f 2 (x)) 2. a b f 2 (x)dx- a b f 1 (x)dx

Théorème2.5.(Intégrale définie)Onsu pposequelafonctionré ellef:[a,b]Restinté grablesur

0 Alorslasuite réelle determegénérale I n convergedansRets alimit e,notée a b f(x)dxestappel éeintégraledéfiniede fsur[a,b]. Danscecour snousn ousintéressero nsessentiell ementauxfonctionscontinueset auxfonctionsconti- nuesparmo rceaux,dé finiessurunintervallefermébo rné[a,b]deR. Définition2.6.Ondi tquelafon ctionf:[a,b]Restcont inueparmorceauxsifestborn éeet l'ensembledespointsdedisco ntinuité defestdeca rdinal fini. Nousadmettr onsetutiliseronssouventle théorè mesuivant: Théorème2.7.Soit[a,b]unin tervallefermébornédeR.Alorstoutefonctioncontinuef:[a,b]R estinté grablesur[a,b].

Note2.8.Dansl'exp ression

a b f(x)dx,aetbsontlesbo rnesd'intég ration,xestlav ariabl ed'inté-

gration;c'estunevariab lemuette.Ellepe utdoncêt reremplacéepartoute autrevaria ble,àl'exception

dece llesdesbornesd'int égratione tbiensûrdelavaria bleutiliséepournomméelafonc tion.Ainsi,si f:

[a,b]Restinté grablesur[a,b],onaleségalitéssuivantes: a b f(x)dx= a b f(t)dt= a b f(u)du= a b f(v)dv= a b f(y)dy.

2.2Que lquespropriétésdesintégral esdéfinies

Onsu pposedanslalistedespr opriétésci- dessou sque[a,b]estunin terval lefermébornédeR,fetg

sontdesfon ctions intégrablessur[a,b].

1.Qu andlesbornesd 'intégratio nsontconfondues:

a a f(x)dx=0

2.La relat iondeChasles:

?c?[a,b], a c f(x)dx+ c b f(x)dx= a b f(x)dx

3.Qu andonpermutele sbor nesd'intégration:

b a f(x)dx=- a b f(x)dx

4.La linéa rité:

i. a b (f+g)(x)dx= a b f(x)dx+ a b g(x)dx ii. ?λ?R, a b (λf)(x)dx=λ a b f(x)dx

5.Qu andlegraphed'u nedesf onctionsesttou joursaudessusdel' autre:

Sif?gsur[a,b],alors

a b f(x)dx? a b g(x)dx

2.2Quel quespropriétésdesintég ralesdéfinies11

6.Com paraisondelavaleurabsoluedel'i ntégra leetde l'intégraledelavaleura bsolue :

a b f(x)dx a b |f(x)|dx

2.3Pri mitives:calculd'intégralesdéfinies

Souvent,danslapratique,cal culerun eintég raledéfinieseramènerapournous,àch ercheruneprim itive

pourlafon ctionà intégrer. Définition2.9.Soitf:[a,b]Runefonc tionréelle.Onappellepri mitivedef,toutefonctiondéri- vableFdéfiniesur[a,b]etvér ifiantF =f.

Exemple2.10.

•Surl' intervalle[-2,3],lafonctionFdéfinieparF(x)=-cos(x)estunep rimitive delafonction fdéfiniesur[-2,3]parf(x)=sin(x). •SurR,lafonctionx- 1 2 x 2 estune primitive def:x-x;lafonctionx- 1 2 x 2 +7enes t uneaut re. Théorème2.11.Sil afoncti onf:[a,b]Radmetunepri mitiveF,alorslesprimitivesdefsont touteslesfoncti onsGdela formeG=F+λpourλparcourantR. Corollaire2.12.Soientf:[a,b]Runefonc tionréellesupposéeadmett reuneprimitiveF,x 0 ?[a,b] ety 0 0 enx 0 Exemple2.13.Soitf:[-2,2]Rdéfinieparf(x)=-x.fadmetuneuniqu eprimitiv eF,prenant lava leur3en1.PourdéterminerF,onécritquetouteprimitivedefestdel aforme F(x)=- 1 2 x 2

oùλestunec onstanter éelle.LaconditionF(1)=3fixelava leurde laconstanteλ.F(1)=3siet seule-

mentsiλ= 7 2 .Conclusion:F(x)= 1 2 (-x 2 +7). Note2.14. Uneprim itive(quellequ'ellesoit)de f:[a,b]Restauss iappeléeintégral eindéfiniedef etest notée f(x)dx(noterl'absence debornes). Remarque2.15.(conséque ncedelalinéari tédeladérivation)

1.Po urdeuxfoncti onsf,g:[a,b]R,siFetGsontdesprimi tivesr espectivesdefetg,alorsla

somme(F+G)estunep rimitived e(f+g).

2.Si festunep rimitived ef,alorspourtoutréelλ,(λF)estunep rimitive de(λf).

Théorème2.16.(théorème delamoyenne)Soitf:[a,b]Runefonc tionréellecontinuesur [a,b].Ilexisteunpointc?[a,b]telquef(c)= 1 b-a a b f(x)dx. (Lenom breréel 1 b-a a b f(x)dxestlamoy enne delafonctionfsurl'in tervalle[a,b]). Enut ilisantlethéorèmedelamoyen neonpe utprouverlethéorèmefonda mentalsuivant: Théorème2.17.Soitf:[a,b]Runefonc tionréellecontinuesur[a,b].Etantdonnéunpointx 0 x 0 x f(t)dtestunep rimitivede f.Cetteprimitive s'annuleenx 0 Danslaprat ique,c 'estlecorollairesuivantque l'onappliquep ourcalculer l'intégraledéfinied'une fonctiondontonconna îtuneprimitiv e. Théorème2.18.Soitf:[a,b]Runefonc tionréellecontinuesur[a,b].SiFestunep rimitived ef, alorsona a b f(x)dx=F(b)-F(a).

12Intégration:fonctionréelled'unevari ableréelle.

2.4Tech niquesd'intégration

Danscepara graphe ,ondécritlestechniquesdebaseàmaî triserpou rmeneràbienl ecalculd'unein té-

graledéfinie.

2.4.1Primiti vesdefonctionsusuelles

Lali stedeprimitives defonc tionsusuellesàconnaître: Primitivesdequelquesfonctionsusu ell es(λestunec onstanterée lle)

1)pou rα?R,α-1,ona

x dx= x

α+1

α+1

2) 1 x dx=ln|x|+λ

3)p ourα?R,α0,ona

e αx dx= 1 e αx

4)p ourunréelastrictementpositifetdifférentde1,

a x dx= a x ln(a) 5) sin(x)dx=-cos(x)+λ 6) cos(x)dx=sin(x)+λ

2.4.2Techni qued'intégrationparparties

Late chniqued'intégrationparpar tiesestfondéesurlaformulededér ivatio nd'unproduitdefonctions

dérivables: (u×v) =u

×v+u×v

Théorème2.19.Soientuetvdeuxfoncti onsréellescontinûmentdériv ables(i.e.desfonctionsdériva-

blesetdo ntlesd érivéessontc ontinues)s urunintervalleI.

Alorslafoncti onréel leproduitu

×vadmetuneprimi tivesurIeton a:

1. (u

×v)(x)dx=(u×v)(x)-

(u×v )(x)dx

2.si aetbsontdeuxpo intsdeI,

a b (u

×v)(x)dx=[(u×v)(x)]

a b a b (u×v )(x)dx (danscetteformu le,[(u×v)(x)] a b désigne(u(b)×v(b)-u(a)×v(a))

Exemple2.20.

1.Cal culeruneprimitivedel afonctionf:RRdéfinieparf(x)=xe

αx oùαestunno mbrer éel nonnul .

Solution:

a)O nposeu (x)=e αx etv(x)=x,cequidonneparexempleu(x)= 1 e αx enu tilisantlesfor- mulesdesprimi tivesdesf onctionsusuelles.Onav (x)=1. b)En utilis antlea)etlatechniqued'intég ratio nparpar ties,onob tient: xe αx dx= 1 xe αx 1× 1 e αx dx.

Onen dédui t

xe αx dx= 1 xe αx 1 2 e αx +λ,oùλestuneco nstanterée llequelconque. 2. Calculeruneprimitived elafoncti onf:]0,+∞[R,f(x)=ln(x).

Solution:onposeu

(x)=1,v(x)=ln(x),d'oùu(x)=x,v (x)= 1 x etal ors ln(x)dx=xln(x)- x× 1 x dx=xln(x)- dx,cequidonne ln(x)dx=xln(x)-x+λoùλestune constanter éellequelconque.

2.4Techn iquesd'intégration13

quotesdbs_dbs1.pdfusesText_1
[PDF] integrale nulle

[PDF] intégration de l'approche genre dans les projets de développement

[PDF] intégration des irlandais aux etats unis

[PDF] intégration des tice dans l'enseignement

[PDF] intégration du genre dans le cycle de projet

[PDF] integration enep 2017

[PDF] intégration linguistique scolaire et sociale primaire

[PDF] integration numerique methode de trapeze exercice

[PDF] intégration numérique methode de trapeze exercice corrigé

[PDF] intégration numérique simpson

[PDF] intégration par changement de variable exercices corrigés

[PDF] intégration par parties exercices corrigés

[PDF] intégrer antidote dans word mac

[PDF] intégrer dauphine en l3

[PDF] integrer ecole ingenieur apres licence