[PDF] Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F





Previous PDF Next PDF



Chapitre 10 – Mouvements des satellites et planètes

S – Corrigés des parcours « Préparer l'évaluation » et « Approfondir » Exercice résolu. 15 Apprendre à rédiger a. Le système étudié est le satellite ...



mouvement-des-satellites-et-des-planetes-exercices-non-corriges-1

EXERCICE 1. Zarke AL Yamama est un satellite marocain qui a pour fonction



Corrigé des exercices Physique 10 Satellites planètes

Corrigé des exercices Physique 10. Satellites planètes & mouvement circulaire. N°13 p. 257 : Planètes extra-solaires. 10.3. Page 2. Corrigé des exercices 



Exercices sur le mouvement des satellites et planètes

Exercices sur le mouvement des satellites et planètes. Exercice 1. En Juillet 2004 la sonde européenne Cassini-Huygens nous a livré ses premiers clichés des 



Chapitre 12 : Mouvement des planètes et des satellites

Exploiter les relations liant la vitesse la période de révolution et le rayon de la trajectoire. (Exercices). (9). Connaître et justifier les caractéristiques 



Problèmes de physique de concours corrigés – 1ère année de

La variation de la quantité de mouvement du satellite est )V'V(MP rr r planète est une constante du mouvement ; par conséquent : E. m v. G m M r. m v. G m M.



Exercices : Satellites CORRECTION

choisit les valeurs de n´importe quelle planète. Ici on a choisi la Terre Le mouvement de Titan autour de Saturne est uniforme. 1.3.2 a = G χ. MS. RT. 2.



Exercices corrigés de Physique Terminale S

19. Chapitre 10. Satellites planètes & mouvement circulaire. R R . Lois de Képler. 1o. ) Les planètes ou satellites décrivent des 



20 min

On considère que le mouvement de la planète Jupiter dans le référentiel En étudiant le mouvement du satellite Io dans un référentiel dont l ...



TS-EXERCICES-Kepler.pdf

planète quelconque de masse m du système solaire dont le centre d'inertie est situé au point P3. MOUVEMENT DES PLANETES ET DES SATELLITES. TS. Page 2. 4 



Chapitre 10 – Mouvements des satellites et planètes

S – Corrigés des parcours « Préparer l'évaluation » et « Approfondir » Chapitre 10 – Mouvements des satellites et planètes ... Exercice résolu.



mouvement-des-satellites-et-des-planetes-exercices-non-corriges-1

EXERCICE 1. Zarke AL Yamama est un satellite marocain qui a pour fonction



Corrigé des exercices Physique 10 Satellites planètes

Corrigé des exercices Physique 10. Satellites planètes & mouvement circulaire. 1. Képler : T. 2. R3. = 4?2. GM. N°13 p. 257 : Planètes extra-solaires.



Problèmes de physique de concours corrigés – 1ère année de

La variation de la quantité de mouvement du satellite est )V'V(MP Cet exercice présente l'expérience historique de diffusion d'une particule alpha ...



Exercices sur le mouvement des satellites et planètes

Exercices sur le mouvement des satellites et planètes. Exercice 1. En Juillet 2004 la sonde européenne Cassini-Huygens nous a livré ses premiers clichés 



Exercices sur le chapitre 3 : La gravitation universelle

c) Comment expliquer que sa trajectoire puisse être déviée à l'approche d'une planète ? Exo 9 : Modéliser une action : ?. Deux satellites S1 et S2 tournent 



EXERCICES DIVERS SUR LES SATELLITES

1) Montrer que le mouvement du satellite est uniforme. On schématise dans le référentiel héliocentrique



20 min

Le satellite a été mis en orbite le 10 décembre 2001 à une altitude h de la On considère que le mouvement de la planète Jupiter dans le référentiel ...



Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Étudier le mouvement d'un satellite ... Le satellite Phobos de la planète Mars décrit une trajectoire circulaire dont ...



Chapitre 12 : Mouvement des planètes et des satellites

appliquant la deuxième loi de Newton aux satellites ou aux planètes. Exercices n°8 p 262 (corrigé dans livre) ; n°12 p 263 ; n°19 p 265/266 et n°20 p ...



Physique-D-chap12-planetes et satellites - Physagreg

Chapitre 12 : Mouvement des planètes et des satellites Connaissances et savoir-faire exigibles : (1) Enoncer les lois de Kepler et les appliquer à une trajectoire circulaire ou elliptique (2) Définir un mouvement circulaire uniforme et donner les caractéristiques de son vecteur accélération

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F Exercices Gravitation universelle Page 1 Exercices Gravitation universelle Exercice 1 : P P MPP La station orbitale I.S.S. tourne autour de la Terre sur une orbite circulaire à une altitude de 274 km. 1. M PMP P ŃB Ń ŃPP Ń M PMP orbitale ? 2. P M NP M PMP ? Donnée : Rayon de la Terre : R = 6380 km 1. M NP M PMP P P M PMP : - M NP : - R = RT + h - R = 6380 + 274 - R 6,65 x 10 3 km Exercice 2 : Calculer une force de gravitation Le satellite Phobos de la planète Mars décrit une trajectoire circulaire dont le centre est confondu avec le centre de Mars. Le rayon de cette trajectoire a pour valeur R = 9378 km. On considérera que Phobos et Mars ont des masses régulièrement réparties autour de leur centre. 1. Exprimer littéralement la valeur F M / P de la force exercée par Mars sur le satellite Phobos. 2. Calculer la valeur de cette force. 3. Déterminer la valeur de la force F P / M exercée par Phobos sur la planète Mars. Données : - Masse de la planète Mars : m M = 6,42 x 10 23 kg - Masse du satellite Photos : m P = 9,6 x 10 15 kg - Constante de gravitation Universelle : G = 6,67 x 10 11 S.I

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 2

1. Expression littérale de F M / P :

2. Valeur de la force F P / M :

3. Valeur de la force F P / M : De la loi de la gravitation Universelle, on déduit

Exercice 3 :

Comparer poids et force de gravitation

On suppose que la Terre a une masse régulièrement répartie autour de son centre Son rayon est R = 6,38 x 10 3 km, sa masse est M = 5,98 x 10 24 kg et la constante de gravitation Universelle est G = 6,67 x 10 11 S.I.

1. Déterminer la valeur de la force de gravitation exercée par la Terre sur un

ballon de masse m = 0,60 kg posé sur le sol.

2. GpP S r NM SMŃp M Z PPp M

pesanteur vaut : g = 9,8 N / kg.

3. Comparer les valeurs des deux forces et conclure.

1. Force exercée par la Terre sur le ballon :

- La loi de la gravitation Universelle donne : Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 3

2. Poids du ballon :

- P = m . g - P 0,60 x 9,8 - P 5,8 N

3. Comparaison : P F.

Exercice 4

FSM M IŃ JMPMP j MP IŃ

Deux boules de pétanque, de masse m 6D0 J P Sp Ń{Pp MPB

Leurs centre sont distants de d = 20 cm.

1. Calculer la valeur du poids P NB

2. Quelle est la valeur de la force F JMPMP Ńp SM N MP ?

3. 3 pP pN N PP-on pas compte de la

Ń JMPMP Ńp SM MP N ?

Donnée : Constante de gravitation Universelle est G = 6,67 x 10 11 S.I.

IPPp M SMP MP : g = 9,8 N / kg.

1. Valeur du poids P de la boule :

- P = m . g - P 0,650 x 9,8 - P 6,4 N

2. Valeur de la force F de gravitation :

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 4

3. La valeur de la force de gravitation exercée entre les boules est

négligeable devant la valeur du poids des boules : P >> F.

Exercice 5 :

Déterminer des forces sur la Lune

La Lune est assimilable à un solide dont la masse est régulièrement répartie autour de son

centre.

1. eŃ S M Ń JMPMP Ńp SM la Lune de masse m L sur un

objet de masse m, situé à la distance d du centre de la Lune.

2. ( p S PPpM PPp M SMP g 0L à la surface de la

Lune.

3. Des astronautes (Apollo XVII) ont rapporté m r = 117 kg de roches. Déterminer le

poids de ces roches : a. À la surface de la Lune ; b. Dans la capsule en orbite autour de la Lune MPP h = 100 km. Données : m L = 7,34 x 10 22 kg ; R L = 1,74 x 10 3 km ; G = 6,67 x 10 11S.I.

1. Expression de la force de gravitation exercée par la

Lune sur un objet :

2. (S PPpM PPp M SMP M

surface de la Lune : Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 5

- On utilise le MP S NÓP la Lune est dû essentiellement à la force de gravitation exercée par la

Lune NÓPB 2 pŃP : P F

3. Poids des roches :

a. Poids au niveau du sol : b. Poids dans la capsule spatiale :

Exercice 6

a)- (S P ŃMŃ M Ń PMŃP gravitationnelle F et ) Ńp MP SM NM P masse m Ń NM P pSMp SM PMŃ qPe. On Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 6

prendra m = 58 g. b)- SpP Ń Ń ) P ) ŃOpM : c)- Refaire le calcul de la question a)- lorsque la distance a diminué de moitié. d)- FSM M Ń Ńp SM NM MP M Ń Ńp SM M Terre sur cette balle et conclure. a)- Expression P ŃMŃ M Ń PMŃP gravitationnelle F et ) . - Expression littérale : G B r 2

F = ) =

- Valeur : G B r 2 (58 x 10 3)2

F = ) = Þ F = ) 6,67 x 10 11

1,0 2

F = ) 2,24 x 10 13 N

b)- Schéma : - Échelle : 1,0 x 10-13 N ņ 1 cm c)- Calcul lorsque la distance a diminué de moitié. - Valeur : G B r 2 (58 x 10 3)2

F = ) = Þ F = ) 6,67 x 10 11

0,5 2

F = ) 8,97 x 10 13 N

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 7

d)- FSMM M Ń Ńp SM NM MP M Ń Ńp par la Terre sur cette balle : - Force exercée par la Terre sur une balle : - P = m . g Þ P = 58 x 10 ² 3 x 9,81 Þ P 0,57 N - Conclusion : - P >> F IM Ń PMŃP JMPMP P pJJMN evant la force de pesanteur.

Exercice 7 :

Lors de la mission Apollo, les astronautes étaient équipés, pour leur sortie sur la Lune,

ŃNM SMPM M m = 60,0 kg.

a)- Calculer le poids PT (m) de cet équipement sur Terre, puis le poids PL (m) sur la Lune. b)- Quelle est la masse NÓP P S PT sur Terre est égal au poids de la combinaison spatiale sur la Lune ?

c)- La combinaison spatiale peut-elle être portée plus commodément sur la Terre ? Sur la

Lune ? Justifier la réponse.

a)- Poids PT (m) de cet équipement sur Terre, puis le poids PL (m) sur la Lune. - 3 pSP 7 : - PT (m) = m . gT Þ PT (m) = 60,0 x 9,81 Þ PT (m) 589 N - Poids d pSP M I : - PL (m) = m . gL Þ PL (m) = 60,0 x 1,60 Þ PT (m) 96 N b)- Masse NÓP P S PT sur Terre est égal au poids de la combinaison spatiale sur la Lune ? - Valeur de la masse : PT gT 96
9,81

PT B JT Þ Þ Þ 9,8 kg

Ahmed Hakim -Lycée technique qualifiant Allal Fassi -T.C.S O.F

Exercices Gravitation universelle Page 8

c)- La combinaison spatiale : - La combinaison est portée plus commodément sur la Lune que sur la

Terre.

- Cela revient à porter une combinaison de 10 kg P sur la Lune : a)- Poids PT (m) de cet équipement sur Terre, puis le poids PL (m) sur la Lune. - 3 pSP 7 : - PT (m) = m . gT Þ PT (m) = 60,0 x 9,81 Þ PT (m) 589 N - 3 pSP M I : - PL (m) = m . gL Þ PL (m) = 60,0 x 1,60 Þ PT (m) 96 N b)- Masse NÓP P S PT sur Terre est égal au poids de la combinaison spatiale sur la Lune ? - Valeur de la masse : PT gT 96
9,81

PT B JT Þ Þ Þ 9,8 kg

c)- La combinaison spatiale : - La combinaison est portée plus commodément sur la Lune que sur la

Terre.

- FP 6 S pJ M I M 7B

EXERCICE 8 :

En mars 1979, la sonde Voyager 1 (de masse m MSSŃO -XSLWHUquotesdbs_dbs11.pdfusesText_17
[PDF] exercices nature des mots ce1 ce2

[PDF] exercices passé composé auxiliaire être ce2

[PDF] exercices petite section maternelle à imprimer

[PDF] exercices physique premiere s corrigés

[PDF] exercices prépositions pays et villes pdf

[PDF] exercices pronoms relatifs simples et composes

[PDF] exercices racines carrées 3eme corrige

[PDF] exercices suite arithmétique et géométrique

[PDF] exercices sur excel avec corrigés

[PDF] exercices sur la double négation

[PDF] exercices sur la loi des noeuds

[PDF] exercices sur la nature des mots

[PDF] exercices sur la réaction chimique

[PDF] exercices sur la tension électrique

[PDF] exercices sur le produit scalaire tronc commun