[PDF] Équations différentielles 13 avr. 2021 1 Équation





Previous PDF Next PDF



Exercices sur les équations du premier degré

11 oct. 2010 127 La somme de deux entiers est de 924. En ajoutant 78 à chacun d'eux l'un devient le double de l'autre. Déterminer ces nombres.



Correction exercices équations du 1er degré

112 x âge d'Henri. On a : 2(x + 17) = 48. Henri a 7 ans. 113 x l'aire 



Les équations du premier degré

EXERCICES. 6 septembre 2014. Les équations du premier degré EXERCICE 1. Résoudre dans R les équations suivantes en essayant d'appliquer une méthode.



Correction exercices : équations du premier degré

5 nov. 2014 x âge d'Henri. On a : 2(x + 17) = 48. Henri a 7 ans. EXERCICE 20 x ...



Équations différentielles appliquées à la physique

19 juin 2017 On se limitera aux équations différentielles linéaires de degré 1 et 2 ... On préfère écrire en physique l'équation de premier ordre sous la ...



Les équations du premier degré

10 sept. 2010 Comme son nom l'indique on utilise la propriété de la multiplication par rapport à l'addition : Règle 4 Pour tous nombres réels a



Équations différentielles

13 avr. 2021 1 Équation différentielle linéaire du premier ordre ... Remarque : La résolution de ces équations revient à la recherche d'une primitive.



explicatif tests_siteweb

Exercices de compréhension et rédaction : rédigez bien vos réponses Savoir résoudre des équations simples du premier degré.



Les équations du premier degré - Lycée dAdultes

6 sept. 2014 Définition 2 : Une équation du premier degré est une équation où l'inconnue x n'apparaît qu'à la puissance 1. Exemples : • 2x + 3 = 7x + 5 est ...



Les inéquations du premier degré - Lycée dAdultes

6 sept. 2014 EXERCICE 10. Un particulier a des marchandises à transporter. Un premier transporteur lui de- mande 460 € au départ et 35 € par kilomètre.

Équations différentielles

DERNIÈRE IMPRESSION LE13 avril 2021 à 12:29

Équations différentielles

Table des matières

1 Équation différentielle linéaire du premier ordre2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Résolution de l"équation incomplète enx. . . . . . . . . . . . . . . 2

1.3 Résolution de l"équation homogène. . . . . . . . . . . . . . . . . . 2

1.4 Résolution de l"équation linéaire. . . . . . . . . . . . . . . . . . . . 3

1.5 Résolution de l"équation linéaire à coefficients constants. . . . . . . 5

1.6 Application à la physique : circuit RL et RC. . . . . . . . . . . . . . 5

1.7 Équations se ramenant ày"- ay = b. . . . . . . . . . . . . . . . . . . 6

2 Équation différentielle linéaire de second ordre7

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Résolution de l"équation homogène. . . . . . . . . . . . . . . . . . 8

2.3 Résolution de l"équation linéaire. . . . . . . . . . . . . . . . . . . . 10

2.4 Application : isochronisme des petites oscillations. . . . . . . . . . 11

PAUL MILAN1VERS LE SUPÉRIEUR

1 Équation différentielle linéaire du premier ordre

1.1 Définition

Définition 1 :On appelle équationdifférentielle linéaire du premier ordre (E) sur un intervalle I, une équation qui peut se mettre sous la forme : (E):y?+a(x)y=b(x) où l"inconnueyest une fonction dexdérivable que l"on cherche à déterminer et oùaetbsont deux fonctions continue sur un intervalle I

Exemples :

•(E1) :y?+1xy=xéquation différentielle du premier ordre. •(E2) :y?=b(x)équation différentielle du premier ordre incomplète eny. •(E3) :y?-2y=0 équation différentielle du premier ordre à coefficient constant sans second membre ou incomplète enx. •(E4) :y?+xy=0 équation différentielle du premier ordre sans second membre ou homogène.

1.2 Résolution de l"équation incomplète enx

Théorème 1 :Les solutions de l"équation différentielley?=b(x)incomplète enysur I sont toutes les fonctionsy:x?→B(x)oùBest une primitive de la fonctionbsur I. Remarque :La résolution de ces équations revient à la recherche d"une primitive debsur I.

Exemple :Les solutions de l"équationy?=1

x+1sur]-1 ;+∞[sont les fonctionsF:x?→ln(x+1) +koùk?R

1.3 Résolution de l"équation homogène

Théorème 2 :Soita(x)une fonction continue sur un intervalle I. Les solutions de l"équation différentielle homogène :y?+a(x)y=0, sont toutes les fonctionsy:x?→ke-A(x), avecAune primitive deasur I etk?R

Démonstration :Par double implications

•Montrons que les fonctions de la formey(x) =ke-A(x)sont solutions de l"équation homogène. y ?(x) +a(x)y(x) =-kA?(x)e-A(x)+a(x)ke-A(x)A?=a=0.

PAUL MILAN2VERS LE SUPÉRIEUR

1.4 RÉSOLUTION DE L"ÉQUATION LINÉAIRE

•Réciproquement, soityune solution de l"équation homogène. Soit la fonctionzdéfinie sur I par :z(x) =y(x)eA(x). On dérive la fonction z: z ?(x) =y?(x)eA(x)+y(x)A?(x)eA(x)A?=a=y?(x)eA(x)+y(x)a(x)eA(x) =eA(x)?y?(x) +a(x)y(x)?y?+a(x)y=0=0 La fonctionzest constante et l"on posez(x) =k, d"oùy(x) =z(x) eA(x)= ke -A(x).

Exemples :

•Les solutions de l"équation 2y?+3y=0?y?+32y=0, sont les fonctionsy(x) =ke-3 2x •Les solutions sur]-1 ;+∞[de l"équation(x+1)y?+y=0?y?+ 1 x+1y=0, sont les fonctionsy(x) =ke-ln(x+1)=kx+1

1.4 Résolution de l"équation linéaire

Théorème 3 :Problème de Cauchy

Soitaetbdeux fonctions continue sur un intervalle I. Soitx0ety0deux réels.

Le système?y?+a(x)y=b(x)

y

0=y(x0)condition initiale

admet une unique fonction solutionysur I Démonstration :SoitAune primitive de la fonctionasur I. Les solutions de l"équation homogène sont les fonctionsx?→ke-A(x),kétant une constante. La méthode de résolution du problème de Cauchy consiste à faire "varier» la constantek. Cette contradiction apparente constitue "l"astuce» de la démonstra- tion. On pose alors :y(x) =k(x)e-A(x). L"équationy+a(x)y=b(x)devient alors : k k k ?(x)e-A(x)=b(x)?k?(x) =b(x)eA(x) kest donc une primitive de la fonctionbeA. Cette primitive existe bien car la fonctionbeAest une fonction continue sur I comme produit et composée de fonc- tions continue sur I. La condition initiale :y0=y(x0)?y0=k(x0)e-A(x0)?k(x0) =y0eA(x0) Le système admet donc une unique solutiony=ke-Atelle quekest la primi- tive debeAqui vérifiek(x0) =y0eA(x0)

PAUL MILAN3VERS LE SUPÉRIEUR

1.4 RÉSOLUTION DE L"ÉQUATION LINÉAIRE

Théorème 4 :Linéarité

Soitaetbdeux fonctions continues sur un intervalle I. SoitAune primitive de la fonctiona. Les solutions de l"équation différentielle (E) :y?+a(x)y=b(x)sont les fonc- tionsytels que :y=ypart+ke-A, oùypartest une solution particulière de l"équation (E) etkun réel. Remarque :Pour trouver toutes les solutions de l"équation (E), il suffit de trou- ver une solution particulière et de lui ajouter la solution générale de l"équation homogène. Pour trouver cette solution particulière on utilisera la méthode de la "variation» de la constante. Exemple :Déterminer sur I=]-1 ;+∞[, la solution de l"équation différentielle (E) :(x+1)y?+y=6x(x+1)qui s"annule en 1. •Solution générale de l"équation homogène. On met l"équation homogène sous la forme standard :y?+1 x+1y=0

Un primitive sur I dea(x) =1

x+1estA(x) =ln(x+1) La solution générale de l"équation homogène est :y(x) =ke-ln(x+1)= k x+1

•Solution particulière.

On met (E) sous la forme standard :y?+1

x+1y=6x À l"aide de la variation de la constante, on a : k ?(x) =b(x)eA(x)=6x eln(x+1)=6x(x+1) =6x2+6x On peut alors choisir pour la fonctionk:k(x) =2x3+3x2 Une solution particulière de (E) est doncypart= (2x3+3x2)e-ln(x+1)=

2x3+3x2

x+1 •L"ensemble des solutionsyde l"équation (E) sur I est donc : y(x) =2x3+3x2 x+1+kx+1=2x3+3x2+kx+1

•La solution qui s"annule en 1 est telle que :

y(1) =0?2+3+k x+1=0?k=-5 La solution de l"équation (E) qui s"annule en 1 est telle que :y(x) =

2x3+3x2-5

x+1

PAUL MILAN4VERS LE SUPÉRIEUR

1.5 RÉSOLUTION DE L"ÉQUATION LINÉAIRE À COEFFICIENTS CONSTANTS

1.5 Résolution de l"équation linéaire à coefficients constants

Théorème 5 :Soitaetbdeux réels.

Les solutions de l"équation différentielle :y?+ay=bsont les fonctionyde la forme : y(x) =ke-ax+b a

Démonstration :

•La primitiveAd"une constanteaest définie parA(x) =ax. y part=b acary?part+aypart=0+a×ba=b •Les solutions de l"équation sont :y(x) =ke-A(x)+ypart=ke-ax+ba Exemple :Déterminer la fonctiony, solution de l"équationy?+0,5y=1 et telle que :y(0) =3. Les solutions sont donc de la forme :y(x) =ke-0,5x+2 Si l"on cherche la solution particulière qui correspond ày(0) =3, on obtient alors k=1, la solution est doncy(x) =e-0,5x+2 Si l"on veut visualiser l"ensemble des solutions ainsi que la solution particulière, on obtient :

1 2 3 4-1-2-3-4-50

-11 2345O

1.6 Application à la physique : circuit RL et RC

Le circuit ci-contre comprend une bo-

bine d"inductionL, une résistanceR.

L"originedutemps estàlafermeture du

circuit. R LE

PAUL MILAN5VERS LE SUPÉRIEUR

1.7 ÉQUATIONS SE RAMENANT Ày"- ay = b

On suppose que pourt=0 l"intensitéIest nulle. La f.e.m. aux bornes du circuit est constante et égale àE(en volt). Dès que l"interrupteur est fermé, un courant croissanti(t)commence à circuler, il est contrarié par la f.e.m. auto-induite par la bobine et s"établit progressivement. D"après la loi des mailles, nous avons à tout instantt(t>0) : (Eq):Li?+Ri=E a) Résoudre cette équation différentielle. Trouver la fonctionitelle quei(0) =0. b) Donner l"allure de cette fonctioniet préciser les régimes transitoire et établi. a) (Eq)estuneéquationdifférentiellelinéairedu1erordreàcoefficientsconstants.

•On met (Eq) sous la forme standard :i?+RLi=EL

•Les solutionside (Eq) sont de la forme, aveca=RLetb=EL: i(t) =keat+b a=ke-R

Lt+ER.

•Condition initiale :i(0) =0?k+ER=0?k=-ER

Le courantien fonction du temps est donc :i(t) =E

R(1-e-R

Lt) b) La fonctionicroît puis se stabilise àE R

On peut définir :

•le régime transitoire entre les ins-tantst=0 ett=5L R

•le régime établi au delà det=5LR

La bobine retarde l"établissement du

courant.

1.7 Équations se ramenant ày"- ay = b

On considère les équations différentielles suivantes : (E1):y?-2y=1-6xet(E2):y?=y(5-y)

1) Montrer que (E

1) admet une solution affine puis résoudre (E1).

2) Déterminer les solutions strictement positives de (E

2) en posantz=1

y.

1) On poseypartune fonction affine qui vérifie l"équation (E1) :ypart(x) =ax+b.

Comme la fonctionypartdoit vérifier (E1), on a : y ?part(x)-2ypart(x) =1-6x?a-2ax-2b=1-6x?

PAUL MILAN6VERS LE SUPÉRIEUR

-2ax+ (a-2b) =-6x+1

En identifiant, on trouve alorsa=3 etb=1.

La solution particulière est donc :ypart(x) =3x+1 Soityla solution générale de l"équation (E1), on a alors : y(x) =ypart(x) +e-2x?y(x) =ke2x+3x+1

2) On pose :z=1

y?z?=-y?y2avec?x?R,y?=0

Si on divise l"équation (E

2) pary2, on obtient :y?

y2=5y-1 en remplaçant parzetz?, on a :-z?=5z-1?z?+5z=1 On obtient donc la solution générale :z(x) =ke-5x+1

5,k?R+

On revient à la fonctiony:y(x) =1

z(x)=1ke-5x+15,k?R+

2 Équation différentielle linéaire de second ordre

2.1 Définition

Définition 2 :On appelle équation différentielle linéaire du second ordre à coefficients constants (E) sur un intervalle I, une équation qui peut se mettre sous la forme : (E):ay??+by?+cy=d(x) où l"inconnueyest une fonction dexdérivable deux fois que l"on cherche à dé- terminer et oùa,b,csont des réels aveca?=0 etdune fonction continue sur un intervalle I.

Exemples :

•(E1) :y??+y?-2y=10sinx.

•(E2) : 2y??+y?+2y=0 équation homogène du second ordre. •(E3) :y??+y=3x2équation du second ordre incomplète eny?.

PAUL MILAN7VERS LE SUPÉRIEUR

2.2 RÉSOLUTION DE L"ÉQUATION HOMOGÈNE

2.2 Résolution de l"équation homogène

Théorème 6 :Soit (E) une équation différentielle linéaire du second ordre homogène de la forme : (E):ay??+by?+cy=0 On appellepolynôme caractéristiquede l"équation (E), le polynômePdéfini par :

P(X) =aX2+bX+c

SoitΔle discriminant du polynômeP

quotesdbs_dbs29.pdfusesText_35
[PDF] Physique TD 1 : Unités et dimensions - Université de Cergy-Pontoise

[PDF] Corrigé de l 'épreuve de chimie du BTS 88 - Nicole Cortial

[PDF] Respiration cellulaire - L 'Etudiant

[PDF] I PRÉPARATION D 'UNE SOLUTION TITREE D 'ACIDE

[PDF] Première S - Equations cartésiennes d 'une droite - Parfenoff

[PDF] FICHE 67 - EQUATIONS D 'UN PLAN DANS L 'ESPACE

[PDF] FICHE 66 - EQUATIONS E D 'UNE DROITE DANS L 'ESPACE

[PDF] Schémas numériques pour la résolution de l 'équation des ondes

[PDF] Les gaz réels

[PDF] Mécanique des fluides

[PDF] Equations locales de l 'électromagnétisme - Olivier GRANIER

[PDF] Electromagnétique 4 Equations locales Equations de Maxwell

[PDF] La mécanique des fluides

[PDF] Ecoulement d 'un fluide : Equation de continuité - Free

[PDF] Respiration cellulaire - L Etudiant