[PDF] Seconde DS probabilités Sujet 1





Previous PDF Next PDF



EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES. Calculer la probabilité d'un événement. Exercice n°1: Un sachet contient 2 bonbons à la menthe 3 à l'orange et 5 au 



Seconde DS probabilités Sujet 1

b) Calculer les probabilités des événements contraires de A de B et de C. c) Exprimer par une phrase l'événement contraire de C. Exercice 3 : (4 points).



Seconde 1 DS3 probabilités - échantillonnage 2016-2017 S1

b). Calculer de deux manières différentes la probabilité de chacun de ces événements. Exercice 2: (5 points). Dans un sac on a placé les quatre lettres du mot 



Seconde générale - Probabilités - Exercices - Devoirs

Exercice 4 corrigé disponible. Exercice 5 corrigé disponible. Exercice 6 corrigé disponible. 1/4. Probabilités – Exercices - Devoirs. Mathématiques Seconde 



exercice 1 corrigé exercice 2

seconde 7 corrigés applications 12



Terminale S - Probabilités Exercices corrigés

Probabilités exercices corrigés. Terminale S. Probabilités. Exercices corrigés. 1. Combinatoire avec démonstration. 2. Rangements. 3. Calcul d'événements 1.



Analyse combinatoire et probabilités - Exercices et corrigés

2 janv. 2016 Quelle est la probabilité que deux d'entre eux soient marqués ? Solution. 2.2.23 Exercice Le second Comte de Yarborough paria à 1000 contre 1...



Calcul des probabilités § 1 exercices corrigés avec arbres

https://www.deleze.name/marcel/sec2/prob/1/exercices-1.pdf



PROBABILITES – EXERCICES CORRIGES

Exercice n°1. 3) Déterminer la probabilité de l'événement D "La carte choisie n'est ni un ... 51 % ont répondu « oui » à la seconde question et 46 %.



Exercices et problèmes de statistique et probabilités

1.2 Axiomes du calcul des probabilités . Corrigés des exercices . ... Nous avons donc évité de proposer des exercices de probabilités calculatoires ...



leay:block;margin-top:24px;margin-bottom:2px; class=tit maths-simplifiemeabilisfrPROBABILITES – EXERCICES CORRIGES

1) Déterminer la loi de probabilité de X 2) Définir F fonction de répartition de X et construire sa représentation graphique Evénements indépendants Exercice n° 16 Le tableau suivant donne la répartition de 150 stagiaires en fonction de la langue choisie et de l’activité sportive choisie On choisit un élève au hasard



nde 9 Exercices corrigés : Arbres & Probabilités Mai 2021

Utiliser des modèles définis à partir de fréquences observées Connaître et exploiter la formule suivante : p(A ¨ B) = p(A) + p(B) - p(A ? B) Exercice 1: (4 points) Dans une classe de 30 élèves 20 étudient l ?anglais et 15 l ?espagnol 8 étudient les deux langues



Seconde générale - Probabilités - Exercices - Devoirs

Probabilités – Exercices - Devoirs Exercice 1 corrigé disponible Exercice 2 corrigé disponible Exercice 3 corrigé disponible Exercice 4 corrigé disponible Exercice 5 corrigé disponible Exercice 6 corrigé disponible 1/4 Probabilités – Exercices - Devoirs Mathématiques Seconde générale - Année scolaire 2021/2022



nde 9 Exercices corrigés : Arbres & Probabilités Mai 2021

2 A I 'aide de l'arbre de dénombrement calculer la probabilité des événements suivants A : On a 2 boules rouges C : On n'a pas de boule bleue p(A) B : On a une boule de chaque couleur D : La première et la demière boule tirée ont la même couleur 132 322 321 6 322 312 232 6 12 120 54 120 20 -o 45 120 12 120 12 120 120 120 EXERCICE 4A 3



Exercices de seconde sur les probabilités - Apimaths

On tire au hasard une boule dans l’urne on relève sa cou- leur on remet la boule dans l’urne et on en tire une seconde 1 Modéliser cette expérience aléatoire par un ta- bleau 2 En déduire la probabilité de chacun des évène- ments suivants : E:« On tire deux fois la boule rouge »



EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES Calculer la probabilité d’un événement Exercice n°1: Un sachet contient 2 bonbons à la menthe 3 à l’orange et 5 au citron On tire au hasard un bonbon du sachet et on définit les événements suivants : A : « le bonbon est à la menthe » ; B : « le bonbon est à l’orange » ;



seconde 7 corrigés applications 12345 des probabilités 2020

seconde 7 corrigés applications 12345 des probabilités 2020 exercice 3 Une urne contient 4 boules : deux rouges une verte et une jaune indiscernables au toucher On tire au hasard une boule de cette urne Après avoir noté la couleur de la boule obtenue on la replace dans l’urne et on procède à un second tirage



Probabilités Exercices corrigés - univ-rennes1fr

Probabilités exercices corrigés Terminale S Probabilités Exercices corrigés 1 Combinatoire avec démonstration 2 Rangements 3 Calcul d’événements 1 4 Calcul d’événements 2 5 Calcul d’événements 3 6 Dés pipés 7 Pièces d’or 8 Fesic 2001 : Exercice 17 9 Fesic 2001 : Exercice 18 10 Fesic 2002 : Exercice 15 11



Leçon 20 Exercices corrigés

Exercice 1 SoientUetVdeuxvariablesaléatoiresindépendantesdemême loinormalecentréeréduiteN(0;1) surunespaceprobabilisé( ;A;P);soitla suite de variables aléatoires X n n2N dé?nie par X n= U si nest pair et X n= V sinestimpair a) Que dire de la convergence de la suite X



Probabilités : exercices maison

Dans un lycée un tiers des élèves est en seconde et 60 sont des ?lles Les ?lles de seconde représentent un dixième des élèves du lycée On choisit un élève au hasard Quelle est la probabilité que ce soit une ?lle ou un élève de seconde ? 4 Tableaux Exercice 12



Feuille d’exercices de Probabilit´es-2 ann´ee-2 semestre

Universit´e de Marne La Vall´ee Licence d’Economie et de Gestion´ Feuille d’exercices de Probabilit´es-2`eme ann´ee-2`eme semestre (L Le Cor janvier 2006) 1 Rappels Exercice 1 1 1 Rappeler la d´e?nition d’une probabilit´e 2 On consid`ere un jeu de tir sur une cible comportant 3 zones 1 2 et 3 On consid`ere P



Searches related to exercices corrigés de probabilité seconde pdf filetype:pdf

2) La probabilité d’un événement peut-être égale à : 7 11 - 035 1002 1 3) La probabilité qu’un événement A ne se réalise pas est 3 7 donc : P(A) = 3 7 P(A) = 4 7 P(A) = 4 10 P(A) = 7 4 4) On lance un dé à 6 faces Les événements : « obtenir 2 » et « obtenir un nombre impair »sont deux événements :

Comment calculer la probabilité d'un événement?

  • A l'aide de l'arbre de dénombrement, calculer la probabilité des événements suivants . A : On a 2 boules rouges C : On n'a pas de boule bleue EXERCICE 4A.4 B : On a une boule de chaque couleur D : La première et la demière boule tirée ont la même couleur ». Dans une boîte se trouvent deux boules blanches, deux boules noires, trois boules rouges.

Comment calculer les probabilités?

  • Calculer les probabilités suivantes : p(A1) et p(A2). b. Calculer les probabilités de chacun des évènements suivants : (2) p AA1, (2) p AB1et p A A(1 2?). c. Reproduire et compléter l’arbre pondéré suivant, en remplaçant chaque point d’interrogation par la probabilité correspondante.

Comment calculer la probabilité d’avoir ?1?

  • La probabilitéd’avoir X ?1 est p X e( 1)? =?4. d. On est dans les mêmes conditions qu’au c. L’espéranced ela variablealéatoire X est

Comment calculer la probabilité d’un ensemble?

  • En déduire la probabilité P(C E?0). c. Déterminer de même E(C) n P puis P(C E?n)pour tout élément n de l’ensemble {1, 2, 3, 4}. En déduire P(C). d.

Seconde DS probabilités Sujet 1

1

NOM : Prénom : Compétence Acquis En cours dacquisition Non Acquis Déterminer la probabilité d'événements dans des situations d'équiprobabilité. Utiliser des modèles définis à partir de fréquences observées. Connaître et exploiter la formule suivante : p(A È B) = p(A) + p(B) - p(A Ç B) Exercice 1: (4 points)

Dans une classe de 30 élèves, 20 étudient langlais et 15 lespagnol. 8 étudient les deux langues.

Pour un élève donné, on note A lévénement : " lélève étudie langlais » et E lévénement : " lélève

étudie lespagnol ».

1) Que représente lévénement A Ç E ?

2) Que représente lévénement A È E ?

3) Combien délèves napprennent ni langlais ni lespagnol ?

4) Quel est lévénement contraire de A ? Exercice 2: (6 points)

Un sac contient des jetons carrés ou ronds, de couleur verte, bleue ou noire.

Il y a 10 jetons verts dont 4 carrés; 10 des 12 jetons bleus sont carrés; 14 des 18 jetons noirs

sont ronds.

1) Utiliser un arbre ou un tableau pour donner le nombre de jetons de chaque sorte.

2) On tire un jeton au hasard : on suppose qu'il y a équiprobabilité. Soit A l'événement : " le

jeton est vert », B lévénement : " le jeton est carré » et C lévénement : " le jeton est carré et

nest pas bleu ». a) Calculer les probabilités respectives de A, de B et de C. b) Calculer les probabilités des événements contraires de A, de B et de C. c) Exprimer par une phrase lévénement contraire de C. Exercice 3 : (4 points) On joue avec un dé truqué à 6 faces. On lance une fois ce dé. On sait que : · la probabilité dobtenir 1,2,3,4 ou 5 est la même. · la probabilité dobtenir un 6 est égale à 1 2.

1) Soit A lévénement : " obtenir un nombre inférieur ou égal à 5 ». Calculer p(A).

2) Soit B lévénement : " obtenir 1 ». Déterminer p(B).

3) Soit C lévénement : " obtenir un nombre pair ». Déterminer p(C).

En déduire la probabilité dobtenir un nombre impair. Exercice 4 : (6 points) Une urne contient 100 boules numérotées de 1 à 100. On prélève une boule au hasard.

On considère les événements suivants :

· A : " le numéro de la boule est pair » ; · B : " le numéro de la boule est un multiple de 5 » ; · C : " le numéro de la boule est un multiple de 10 » ;

1) Calculer les probabilités des événements A, B, C, A Ç B, B Ç C et A Ç C.

2) En déduire la probabilité des événements A È B et A ÈC.

Que peut-on dire de lévénement A ÈC ? Note : ___ 20

Seconde DS probabilités Sujet 22

NOM : Prénom : Compétence Acquis En cours dacquisition Non Acquis Déterminer la probabilité d'événements dans des situations d'équiprobabilité. Utiliser des modèles définis à partir de fréquences observées. Connaître et exploiter la formule suivante : p(A È B) = p(A) + p(B) - p(A Ç B) Exercice 1: (6 points)

Un sac contient des jetons carrés, ronds ou triangulaires, de couleur noire ou verte.

Il y a 10 jetons ronds dont 4 noirs; 5 des 15 jetons carrés sont verts; 6 des 25 jetons triangulaires sont

noirs.

1) Utiliser un arbre ou un tableau pour donner le nombre de jetons de chaque sorte.

2) On tire un jeton au hasard : on suppose qu'il y a équiprobabilité. Soit A l'événement : " le jeton est

rond », B lévénement : " le jeton est de couleur verte » et C lévénement : " le jeton est de couleur noire et

nest pas rond ». a) Calculer les probabilités respectives de A, de B et de C. b) Calculer les probabilités des événements contraires de A, de B et de C. c) Exprimer par une phrase lévénement contraire de C. Exercice 2: (4 points)

Le professeur de musique a fait une enquête auprès de 150 élèves dun collège : 116 élèves déclarent aimer

les variétés, 52 la musique classique et 40 aiment à la fois les variétés et la musique classique.

Pour un élève donné, on désigne par V lévénement " lélève aime les variétés » et M lévénement " lélève

aime la musique classique ».

1) Que représente lévénement V Ç M ?

2) Que représente lévénement V È M ?

3) Combien délèves naiment ni les variétés, ni la musique classique ?

4) Quel est lévénement contraire de V ? Exercice 3 : (6 points)

Une urne contient 100 boules numérotées de 1 à 100. On prélève une boule au hasard.

On considère les événements suivants :

· A : " le numéro de la boule est impair » ; · B : " le numéro de la boule est un multiple de 10 » ; · C : " le numéro de la boule est un multiple de 20 » ;

1) Calculer les probabilités des événements A, B, C, A Ç B, B Ç C, A Ç C et B Ç C.

2) En déduire la probabilité des événements A È B et A ÈC.

Que peut-on dire de lévénement A ÈC ? Exercice 4: (4 points)

On joue avec un dé truqué à six faces. La probabilité dobtenir une face est proportionnelle au numéro

quelle porte : p1 = p22 = p33 = p44 = p55 = p66 où pi est la probabilité dobtenir la face i.

1) Exprimer p2,p3, p4, p5 et p6 en fonction de p1. 2) Calculer p1. En déduire p2,p3, p4, p5 et p6. 3) On lance une fois ce dé. Calculer la probabilité dobtenir :

a) un nombre pair b) un multiple de 3 Note : ___ 20

DS probabilités Sujet 1

CORRECTION

3

Exercice 1: (4 points)

Dans une classe de 30 élèves, 20 étudient langlais et 15 lespagnol. 8 étudient les deux langues.

Pour un élève donné, on note A lévénement : " lélève étudie langlais » et E lévénement : " lélève

étudie lespagnol ».

1) Que représente lévénement A Ç E ?

2) Que représente lévénement A È E ?

3) Combien délèves napprennent ni langlais ni lespagnol ?

4) Quel est lévénement contraire de A ?

1) Lévénement A Ç E se réalise si lélève étudie à la fois langlais et lespagnol.

2) Lévénement A È E se réalise si lélève étudie soit langlais soit lespagnol. (et éventuellement

les deux langues)

3) On peut saider dun tableau (appelé diagramme de Carroll)

A désigne lévénement contraire de A et E désigne lévénement contraire de E. E E

Total A 8 12 20 A

7 3 10 Total 15 15 30

On peut aussi représenter les données à laide dun diagramme de Venn : On déduit dun des deux diagrammes que 3 élèves napprennent ni langlais, ni lespagnol.

4) Lévénement contraire de A se réalise pour un élève qui nétudie pas langlais.

Exercice 2: (6 points)

Un sac contient des jetons carrés ou ronds, de couleur verte, bleue ou noire.

Il y a 10 jetons verts dont 4 carrés; 10 des 12 jetons bleus sont carrés; 14 des 18 jetons noirs

sont ronds.

1) Utiliser un arbre ou un tableau pour donner le nombre de jetons de chaque sorte.

2) On tire un jeton au hasard : on suppose qu'il y a équiprobabilité. Soit A l'événement : " le

jeton est vert », B lévénement : " le jeton est carré » et C lévénement : " le jeton est carré et

nest pas bleu ». a) Calculer les probabilités respectives de A, de B et de C. b) Calculer les probabilités des événements contraires de A, de B et de C. c) Exprimer par une phrase lévénement contraire de C.

8 E A 12 7

3

DS probabilités Sujet 1

CORRECTION

4

1) 2 arbres sont possibles selon que lon choisit de présenter en premier la forme ou la couleur

des jetons.

Tableau à double entrée

vert bleu noir total carré 4 10 4 18 rond 6 2 14 22 Total 10 12 18 40

2) En situation déquiprobabilité, la probabilité dun événement se calcule par :

nombre de cas favorables réalisant lévénement nombre de cas possibles carré

40 18 22 rond

2 6 bleu noir

14 vert vert

10 4 bleu noir

4 vert

40 10 18 noir bleu 12 carré rond 4

6 carré rond 10 2 carré rond 4 14

DS probabilités Sujet 1

CORRECTION

5 a) p(A) = 10

40 = 1

4 p(B) = 18

40 =
9

20 p(C) = 4 + 4

40 =
1 5 b) p(A) = 1 - p(A) = 3

4 p(B) = 1 - p(B) = 11

20 p(C) = 1 - p(C) = 4

5 c) Lévénement contraire de C se réalise si " Le jeton nest pas carré ou est bleu ».

Exercice 3 : (4 points)

On joue avec un dé truqué à 6 faces. On lance une fois ce dé. On sait que : · la probabilité dobtenir 1,2,3,4 ou 5 est la même. · la probabilité dobtenir un 6 est égale à 1 2.

1) Soit A lévénement : " obtenir un nombre inférieur ou égal à 5 ». Calculer p(A).

2) Soit B lévénement : " obtenir 1 ». Déterminer p(B).

3) Soit C lévénement : " obtenir un nombre pair ». Déterminer p(C).

En déduire la probabilité dobtenir un nombre impair.

Soit p = p(1) = p(2) = p(3) = p(4) = p(5).

La somme des probabilités des événements élémentaires est égale à 1.

Donc 5p +

1 2 = 1

Donc 5p =

1 2

Doù : p = 1

10 La loi de probabilité est donnée par le tableau suivant : x 1 2 3 4 5 6 probabilité 1 10 1 10 1 10 1 10 1 10 1 2

1) p(A) = p(1) + p(2) + p(3) + p(4) + p(5) = 5

10 = 1 2

On peut aussi remarquer que p(A) = 1 - p(6) = 1

2

2) p(B) = p(1) = 1

10

3) p(C) = p(2) + p(4) + p(6) = 2

10 + 1 2 = 1 5 + 1 2 = 2 + 5 10 = 7 10 Lévénement contraire de C, C se réalise si on obtient un nombre impair. donc p(C) = 1 - p(C) = 3 10

DS probabilités Sujet 1

CORRECTION

6

Exercice 4 : (6 points)

Une urne contient 100 boules numérotées de 1 à 100. On prélève une boule au hasard.

On considère les événements suivants :

· A : " le numéro de la boule est pair » ; · B : " le numéro de la boule est un multiple de 5 » ; ·C : " le numéro de la boule est un multiple de 10 » ;

1) Calculer les probabilités des événements A, B, C, A B, B C et A C.

2) En déduire la probabilité des événements A B et A ÈC.

1) p(A) = 50

100 =
1

2 (il y a 50 nombres pairs compris entre 1 et 100)

p(B) = 20 100 =
1

5 (il y a 20 multiples de 5 compris entre 1 et 100 :

5 ;10 ;15 ;20 ;25 ;30 ;35 ;40 ;45 ;50 ;55 ;60 ;65 ;70 ;75 ; 80 ;85 ;90 ;95 ;100)

p(C) = 10 100 =
1

10 (il y a 10 multiples de 10 compris entre 1 et 100 :

10 ;20 ;30 ;40 ;50 ;60 ;70 ;80 ;90 ;100)

p(A B) = 10 100 =
1

10 (Il y a 10 multiples de 5 pairs compris entre 1 et 100 :

10 ;20 ;30 ;40 ;50 ;60 ;70 ;80 ;90 ;100)

p(B C) = p(C) = 1

10 (car tout multiple de 5 est un multiple de 10)

p(A C) = 40
100 =
2

5 (Il y a 40 nombres pairs non multiples de 10 compris entre 1 et 100 :

2 ;4 ;6 ;8 ;12 ;14 ;16 ;18 ;22 ;24 ;26 ;28 ;;32 ;34 ;36 ;38 ;42 ;44 ;46 ;48 ;52 ;54 ;56 ;58 ;62 ;64 ;

66 ;68 ;72 ;74 ;76 ;78 ;82 ;84 ;86 ;88 ;92 ;94 ;96 ;98)

2) On utilise la relation p(A B) = p(A) + p(B) - p(A B) = 1

2 + 1 5 - 1 10 =

5 + 2 - 1

10 = 6 10 = 3 5

On peut le vérifier en dénombrant le nombre déventualités composant l événement A B :

" Le numéro de la boule est pair ou bien est un multiple de 5 ».

Cet événement est composé de :

· plus tous les multiples de 5 impairs compris entre 1 et 100 : 15 au total (1 par dizaine) De même p(A C) = p(A) + p(C) - p(A C)

Or p(C) = 1 - p(C)

Donc : p(A È C) = 1 + p(A) - p(C) - p(A C) = 1 + 1 2 - 1

10 - 2

5 =

20 + 10 - 2 - 8

20 = 20

20 = 1

On en déduit que A C est l événement certain.

Vérifions le à laide dun dénombrement :

A C se réalise pour un nombre pair compris entre 1 et 100 ou qui nest pas un multiple de 10.

DS probabilités Sujet 1

CORRECTION

7 C'est-à-dire pour tous les nombres pairs compris entre 1 et 100 plus tous les nombres impairs compris entre 1 et 100 qui ne sont pas des multiples de 10. Or tous les nombres impairs ne sont pas multiples de 10. Donc A È C est composé des nombres pairs et impairs compris entre 1 et 100. C'est-à-dire de tous les nombres compris entre 1 et 100. Donc A È C est bien lévénement certain et p(A È C) = 1.

DS probabilités Sujet 2

CORRECTION 8

Exercice 1: (6 points)

Un sac contient des jetons carrés, ronds ou triangulaires, de couleur noire ou verte. Il y a 10 jetons ronds dont 4 noirs; 5 des 15 jetons carrés sont verts; 6 des 25 jetons triangulaires sont noirs.

1) Utiliser un arbre ou un tableau pour donner le nombre de jetons de chaque sorte.

2) On tire un jeton au hasard : on suppose qu'il y a équiprobabilité. Soit A l'événement

: " le jeton est rond », B lévénement : " le jeton est de couleur verte » et C lévénement : " le jeton est de couleur noire et nest pas rond ». a) Calculer les probabilités respectives de A, de B et de C. b) Calculer les probabilités des événements contraires de A, de B et de C. c) Exprimer par une phrase lévénement contraire de C.

1) 2 arbres sont possibles selon que lon choisit de présenter en premier la forme ou

la couleur des jetons. noir

50 20 30 vert rond

10 4 carré triangle 6

5 6 carré triangle

19 rond

rond

50 10 25 triangle carré 15 noir vert 4

6 noir vert 10 5 noir vert 6 19

DS probabilités Sujet 2

CORRECTION

9

Tableau à double entrée

noir vert total rond 4 6 10 carré 10 5 15 triangle 6 19 25 Total 20 30 50

2) En situation déquiprobabilité, la probabilité dun événement se calcule par :

nombre de cas favorables réalisant lévénement nombre de cas possibles a) p(A) = 10 50 =
1

5 p(B) = 30

50 = 3

5 p(C) = 10 + 6

50 =
8 25
b) p(A) = 1 - p(A) =4

5 p(B) = 1 - p(B) =2

5 p(C) = 1 - p(C) = 17

25
c) Lévénement contraire de C se réalise si " Le jeton nest pas de couleur noire ou est rond ».

Exercice 2: (4 points)

Le professeur de musique a fait une enquête auprès de 150 élèves dun collège : 116

élèves déclarent aimer les variétés, 52 la musique classique et 40 aiment à la fois les

variétés et la musique classique.

Pour un élève donné, on désigne par V lévénement " lélève aime les variétés » et M

lévénement " lélève aime la musique classique ».

1) Que représente lévénement V Ç M ?

2) Que représente lévénement V È M ?

3) Combien délèves naiment ni les variétés, ni la musique classique ?

4) Quel est lévénement contraire de V ?

1) Lévénement V Ç M se réalise si lélève aime à la fois les variétés et la musique

classique.

2) Lévénement V È M se réalise si lélève étudie aime soit les variétés soit la musique

classique (et éventuellement les deux).

3) On peut saider dun tableau (appelé diagramme de Carroll)

V désigne lévénement contraire de V et M désigne lévénement contraire de M. M M

Total V 40 76 116 V

12 22 34 Total 52 98 150

On peut aussi représenter les données à laide dun diagramme de Venn :

40 M V 76 12

22

DS probabilités Sujet 2

CORRECTION

10

On déduit dun des deux diagrammes que 22 élèves naiment ni les variétés, ni la musique

classique.

4) Lévénement contraire de V se réalise pour un élève qui naime pas les variétés.

Exercice 3 : (6 points)

Une urne contient 100 boules numérotées de 1 à 100. On prélève une boule au hasard.

On considère les événements suivants :

· A : " le numéro de la boule est impair » ; · B : " le numéro de la boule est un multiple de 5 » ; · C : " le numéro de la boule est un multiple de 20 » ;

1) Calculer les probabilités des événements A, B, C, A Ç B, B Ç C et A Ç C.

2) En déduire la probabilité des événements A È B et A ÈC.

Que peut-on dire de lévénement A ÈC ?

1) p(A) = 50

100 =
1

2 (il y a 50 nombres impairs compris entre 1 et 100)

p(B) = 20 100 =
1

5 (il y a 20 multiples de 10 compris entre 1 et 100 : 2 par dizaines)

p(C) = 5 100 =
1

20 (il y a 5 multiples de 20 compris entre 1 et 100 :

20 ;40 ;60 ;80 ;100)

p(AÇ B) = 10 100 =
1

10 (Il y a 10 multiples de 5 pairs compris entre 1 et 100 :

10 ;20 ;30 ;40 ;50 ;60 ;70 ;80 ;90 ;100)

p(B Ç C) = p(C) = 1

20 (car tout multiple de 5 est un multiple de 20)

p(A Ç C) = 45

100 = 9

20 (Il y a 45 nombres pairs non multiples de 20 compris entre 1

et 100 : les 50 nombres pairs - les nombres 20 ;40 ;60 ; 80 et 100)

2) On utilise la relation p(AÈ B) = p(A) + p(B) - p(A Ç B)

Or p(A) = 1 - p(A) = 1

2

Donc p(AÈ B) = 1

2 + 1 5 - 1 10 =

5 + 2 - 1

10 = 6 10 = 3 5 On peut le vérifier en dénombrant le nombre déventualités composant lévénement

AÈ B :

" Le numéro de la boule est pair ou bien est un multiple de 5 ».

Cet événement est composé de :

· tous les numéros pairs compris entre 1 et 100 : 50 au total · plus tous les multiples de 5 impairs compris entre 1 et 100 : 15 au total (1 par dizaine)

DS probabilités Sujet 2

CORRECTION

11 De même p(A È C) = p(A) + p(C) - p(A Ç C)

Or p(A) = 1 - p(A) et p(C) = 1 - p(C)

Donc : p(A È C) = 2 - p(A) - p(C) - p(A Ç C) = 2 - 1 2 - 1

20 - 9

20 =

40 - 10 - 1 - 9

20 = 20

20 = 1

On en déduit que A È C est lévénement certain.quotesdbs_dbs21.pdfusesText_27
[PDF] exercices corrigés de régulation industrielle

[PDF] exercices corrigés de rhéologie

[PDF] exercices corrigés de séchage pdf

[PDF] exercices corrigés de structure de la matière et des liaisons chimiques

[PDF] exercices corrigés de système d'information géographique

[PDF] exercices corrigés de toxicologie générale

[PDF] exercices corrigés dénombrement terminale s pdf

[PDF] exercices corrigés dessin technique pdf

[PDF] exercices corrigés différentiabilité

[PDF] exercices corrigés droit des sociétés pdf

[PDF] exercices corrigés dual simplexe

[PDF] exercices corrigés échantillonnage traitement de signal

[PDF] exercices corrigés econometrie regression multiple

[PDF] exercices corrigés emprunt obligataire pdf

[PDF] exercices corrigés en c++ orienté objet pdf