[PDF] Supplement of Compilation and evaluation of gas phase diffusion





Previous PDF Next PDF





Compilation and evaluation of gas phase diffusion coefficients of

Sep 8 2014 surface; (2) gas molecules collide with the surface



A Source of Error in Photoanode Evaluation

The photocurrent density curves for the 535 cm2 photoanode were obtained using Equation 1 (J) and. Equation 2 (JC) under front (C) and back (D) illumination 



Supplement of Compilation and evaluation of gas phase diffusion

s. -1. The preferred diffusivity of n-butane (75±3) Torr cm. 2 s of 55 Torr cm2 s-1 after being extrapolated to 298 K. Last change in the preferred ...





Recommendations for Noninvasive Evaluation of Native Valvular

C. Role of Imaging in Tricuspid Regurgitation. 345. 1. Evaluation of the Tricuspid Valve. 345 a. Echocardiographic imaging. 345 b. CMR imaging. 345. 2.



The Clinical Use of Stress Echocardiography in Non-Ischaemic

assessment of known or suspected ischaemic heart disease.12 Stress- SE is an extremely safe diagnostic tool in the evaluation of patients.



Evaluation of Climate Models

9.7.2. Understanding the Range in Model Climate In this chapter model evaluation covers simulation of the mean climate



Human Health Evaluation Manual (Part E Supplemental Guidance

S specific dermal absorption from soil values for ten chemicals and Effective diffusivity of the absorbing chemical in the epidermis (cm2/hr). Do.



Development of a novel biomaterial: Part II. Evaluation of a photo

Partie II : Évaluation d'une méthode de photo-réticulation. RDDC Toronto TR 2005- approximate intensity of irradiation (expressed in mW/cm2).

Supplement of Compilation and evaluation of gas phase diffusion Supplement of Atmos. Chem. Phys., 15, 5585-5598, 2015 doi:10.5194/acp-15-5585-2015-supplement © Author(s) 2015. CC Attribution 3.0 License.Supplement of

Compilation and evaluation of gas phase diffusion coefficients of reactivetrace gases in the atmosphere: Volume 2. Diffusivities of organiccompounds, pressure-normalised mean free paths, and averageKnudsen numbers for gas uptake calculations

M. J. Tang et al.

Correspondence to:M. J. Tang (mingjintang@gmail.com) and M. Kalberer (markus.kalberer@atm.ch.cam.ac.uk)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. I

Table of Contents

1 Alkanes and cycloalkanes ............................................................................................ 1

1.1 CH4 (methane), C2H6 (ethane), and C3H8 (propane) ............................................. 1

1.2 C4H10 (butane, methyl propane) ............................................................................ 3

1.3 C5H12 (n-pentane, methyl butane, dimethyl butane) ............................................. 5

1.4 C6H14 (n-hexane, 2,3-dimethyl butane) ................................................................ 7

1.5 C7H16 (n-heptane, 2,4-dimethyl pentane).............................................................. 9

1.6 C8H18 (n-octane, 2,2,4-trimethyl pentane) .......................................................... 11

1.7 C9H20 (n-nonane), C10H22 (n-decane, 2,3,3-trimethyl heptane) and C12H26 (n-

dodecane) .................................................................................................................. 13

1.8 C16H34 (n-hexadecane), C17H36 (n-heptadecane) and C18H38 (n-octadecane) ..... 15

1.9 C3H6 (cyclopropane), C5H10 (cyclopentane) and C6H12 (cyclohexane, methyl

cyclopentane) ............................................................................................................ 17

2 Alkenes and alkynes .................................................................................................. 19

2.1 C2H4 (ethene) and C3H6 (propnene) .................................................................... 19

2.2 C4H8 (1-butene, cis-2-butene, trans-2-butene, 2-methyl propene) ..................... 21

2.3 C5H10 (1-pentene), C6H12 (1-hexene, 2-3-dimethyl-2-butene), C8H16 (1-octene)

................................................................................................................................... 22

2.4 C3H4 (propadiene), C4H6 (1,3-butadiene), C5H8 (isoprene), C6H10 (1,5-hexadiene,

2,3-dimethyl-1,2-butadiene) ..................................................................................... 24

2.5 C2H2 (ethyne), C3H4 (propyne), C4H6 (1-butyne) ............................................... 26

3 Aromatic hydrocarbons .............................................................................................. 27

3.1 C6H6 (benzene).................................................................................................... 27

3.2 C7H8 (toluene) ..................................................................................................... 29

3.3 C8H10 (ethyl benzene, o-xylene, m-xylene, p-xylene) ........................................ 30

3.4 C9H12 (n-propylbenzene, iso-propylbenzene, 1,2,4-trymethylbenzene, 1,3,5-

trimethylbenzene) ..................................................................................................... 31

3.5 C10H14 (p-cymene, p-tert-butyltolyene) and C8H8 (styrene) ............................... 32

3.6 C10H8 (naphthalene), C12H10 (diphenyl), C14H10 (anthracene)............................ 33

4 Alcohols ..................................................................................................................... 35

4.1 CH4O (methanol) ................................................................................................ 35

4.2 C2H6O (ethanol) .................................................................................................. 37

4.3 C3H8O (1-propanol, 2-propanol), C3H6O (prop-2-en-1-01) ............................... 39

4.4 C4H10O (1-butanol, 2-butanol, methyl-1-propanol, methyl-2-proponol)............ 41

II

4.5 C5H12O (1-pentanol, 2-pentanol) ........................................................................ 43

4.6 C6H14O (1-hexanol, 2-ethyl-2-pentanol), C7H16O (1-heptanol), C8H18O (1-

octanol) ..................................................................................................................... 44

4.7 glycols ................................................................................................................. 45

5 Aldehydes and ketones .............................................................................................. 46

5.1 C3H6O (acetone).................................................................................................. 46

5.2 C4H8O (methyl ethyl ketone), C5H10O (methyl n-propyl ketone), C6H10O (4-

methyl pent-3-en-2-one), C

9H10O (isophorone) ....................................................... 48

5 Acids .......................................................................................................................... 49

6 Ethers ......................................................................................................................... 51

7 Esters .......................................................................................................................... 52

7.1 C2H4O2 (methyl formate), C3H6O2 (ethyl formate, methyl acetate) ................... 52

7.2 C4H8O2 (prolyl formate, ethyl acetate, methyl propionate) ................................ 54

7.3 C5H10O2 (2-methylpropyl formate, n-propyl acetate, 2-methylethyl acetate, ethyl

propionate, methyl n-hutyrate, methyl isobutyrate) .................................................. 56

7.4 C6H12O2 (n-pentyl formate, iso-pentyl formate, n-butyl acetate, 2-methypropyl

acetate, ethyl n-butyrate, ethyl isobutyrate, methyl n-pentanoate) ........................... 58

7.5 C7H14O2 (n-pentyl acetate, n-butyl propionate, iso-butyl propionate, n-propyl n-

butyrate, n-propyl iso-butyrate, iso-propyl iso-butyrate, ethyl n-pentonoate, methyl

hexanonate) ............................................................................................................... 60

7.6 C8H16O2 (n-pentyl acetate, n-butyl propionate, iso-butyl propionate, n-propyl n-

butyrate, n-propyl iso-butyrate, iso-propyl iso-butyrate, ethyl n-pentonoate, methyl

hexanonate) ............................................................................................................... 62

7.7 C9H19O2 (m-pentyl n-butyrate, n-pentyl iso-butyrate, iso-butyl n-pentanoate) and

C

9H10O2 (benzyl acetate) .......................................................................................... 64

7.8 C20H38O4 (dipentyl sebacate), C12H14O4 (diethyl phthalate), C16H22O4 (di-n-butyl

phthalate), C

24H38O4 (di-2-ethylhexyl phathalate) .................................................... 65

8 Multifuntional species ................................................................................................ 67

8.1 C3H8O2 (2-methoxy ethanol), C4H10O2 (2-ethoxy ethanol), C4H10O3 (diethyl

glycol), C

6H14O4 (triethyl glycol), C6H14O3 (dioxitol) ............................................. 67

8.2 C5H4O2 (furdural), C6H12O2 (4-hydroxyl-4-methyl-2-pentanone), C6H12O3 (2-

ethoxy ethyl acetate), C

8H8O3 (methyl salicylate) .................................................... 69

9 N-containing species .................................................................................................. 71

9.1 C4H11N (n-butylamine, iso-butylamine, and diethylamine), C2H8N2 (ethyl

diamine), C

3H7NO (dimethyl formamide), C6H15N (triethylamine), C12H12N2

(benzidine) ................................................................................................................ 71

9.2 C6H7N2 (aniline), C6H5NO2 (nitrobenzene) ........................................................ 73

III

9.3 HCN, C3H3N (acrylonitrile), C6H7NO2 (ethyl cyanoacrylate), C7H5N

(benzonitrile), C

5H5N (pyridine), C5H11N (piperidine) ............................................ 75

1

1 Alkanes and cycloalkanes

1.1 CH4 (methane), C2H6 (ethane), and C3H8 (propane)

Last evaluated: 10 July 2014

Species Reference T (K) Dm(T) Dm(298) De(T) (De/Dm-1) (%)

Methane Coward and

Georgeson, 1937 273 149 174 138 -7

Muller and Cahill,

1964 298 164 164 161 -2

353 218 217 -1

382 252 249 -1

Cowie and Watts,

1970 298 165 165 161 -2

ethane Boyd et al., 1951 298 112 112 109 -3

Elliott and Watts,

1972 298 116 116 109 -6

propane Barr and Watts, 1972 298 87 87 86 -1

Comments:

methane: The diffusivities of methane measured at 298 K by Muller and Cahill (1964) and Cowie and Watts (1970) agree well with that extrapolated to 298 K from that at 273 K measured by Coward and Georgeson (1937). The measured diffusivities by the three studies agree well with the estimated values using Fuller"s method over 273-382 K. ethane: The diffusivities of ethane measured at 298 K by Boyd et al. (1951) and Elliot and Watts (1972) agree well, and are only a few percentages larger than the estimated value using Fuller"s method. propane: Only one study (Barr and Watts, 1972) measured the diffusivity of propoane (at 298 K), and the reported value is only 1% larger than the estimated value using

Fuller"s method.

Preferred value in N

2 (or air/O2) at 298 K:

methane: (168±5) Torr cm 2 s-1 The preferred diffusivity of methane at 298 K, (168±5) Torr cm

2 s-1, is the average of

those reported by Muller and Cahill (1965) at 298 K, Cowie and Watts (1970) at 298 K, and that extrapolated to 298 K from that measured at 273 K by Coward and Georgeson (1937). ethane: (114±5) Torr cm 2 s-1

2The preferred diffusivity of ethane at 298 K, (114±5) Torr cm

2 s-1, is the average of those

reported at 298 K by Boyd et al. (1951) and Elliot and Watts (1972), and the given uncertainty reflects the difference between the preffered value and the estimated value using Fuller"s method. propane: (87±5) Torr cm 2 s-1 The preferred diffusivity of propane at 298 K, (87±5) Torr cm

2 s-1, is based on that

reported by Barr and Watts (1972). Though the relative difference between the measured and estimated values is only 1%, a 5% uncertainty is given to the preferred value.

Last change in the preferred value: 10 July 2014

References:

Barr, J. K., and Sawyer, D. T.: Studies of the Liquid Phase Mass-Transfer Term in Gas

Chromatography, Anal. Chem., 36, 1753-1759, 1964.

Boyd, C. A., Stein, N., Steingrimsson, V., and Rumpel, W. F.: An Interferometric Method of Determining Diffusion Coefficients in Gaseous Systems, J. Chem. Phys.,

19, 548-553, 1951.

Coward, H. F., and Georgeson, E. H. M.: The diffusion coefficient of methane and air, J.

Chem. Soc., 1085-1087, 1937.

Cowie, M., and Watts, H.: Diffusion of Methane and Chloromethanes in Air, Can. J.

Chem., 49, 74-77, 1971.

Elliott, R. W., and Watts, H.: Diffusion of some Hydrocarbons in Air: a Regularity in the Diffusion Coefficients of a Homologous Series, Can. J. Chem., 50, 31-34, 1972. Muller, C. R., and Cahill, R. W.: Mass Spectrometric Measurement of Diffusion

Coefficients, J. Chem. Phys., 40, 651-654, 1964.

3

1.2 C4H10 (butane, methyl propane)

Last evaluated: 10 July 2014

Species Reference T (K) Dm(T) Dm(298) De(T) (De/Dm-1) (%) n-butane Boyd et al., 1951 298 73 73 74 1

Hargrove and Sawyer,

1967 298 73 73 74 2

Fuller et al., 1969 302 76 74 75 -1

Elliott and Watts, 1972 298 78 78 75 -3

Gotoh et al., 1974 298 77 77 75 -3

378 121 112 -8

438 160 144 -10

methyl propane Boyd et al., 1951 298 69 69 74 7

Barr and Watts, 1972 298 73 73 74 1

Comments:

n-butane: The diffusivities measured at 298 K by Boyd et al. (1951), Hargrove and Sawyer (1967), Elliot and Watts (1972) and Gotoh et al. (1974) all agree well with that extrapolated to 298 K from that measured at 303 K by Fuller et al. (1969). The difference between the measured diffusivities and the estimated values over 298-438 K are not larger than 10%. methyl propane: The diffusivities of methyl propane measurd by the two studies (Boyd et al., 1951; Barr and Watts, 1972) at 298 K agree well, and are only a few percentages smaller than the estimated value using Fuller"s method.

Preferred value in N

2 (or air/O2) at 298 K:

n-butane: (75±3) Torr cm 2 s-1 The preferred diffusivity of n-butane, (75±3) Torr cm

2 s-1, is the average of those reported

by all the studies at 298 K (or extrapolated to 298 K if the measurement was not carried out at 298 K). methyl propane: (71±3) Torr cm 2 s-1 The preferred diffusivity of methyl propane, (71±3) Torr cm

2 s-1, is the average reported

by Boyd et al. (1951) and Barr and Watts (1972).

Last change in the preferred value: 10 July 2014

References:

4Barr, J. K., and Sawyer, D. T.: Studies of the Liquid Phase Mass-Transfer Term in Gas

Chromatography, Anal. Chem., 36, 1753-1759, 1964.

Boyd, C. A., Stein, N., Steingrimsson, V., and Rumpel, W. F.: An Interferometric Method of Determining Diffusion Coefficients in Gaseous Systems, J. Chem. Phys.,

19, 548-553, 1951.

Elliott, R. W., and Watts, H.: Diffusion of some Hydrocarbons in Air: a Regularity in the Diffusion Coefficients of a Homologous Series, Can. J. Chem., 50, 31-34, 1972. Fuller, E. N., Ensley, K., and Giddings, J. C.: Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, J. Phys. Chem., 73, 3679-

3685, 1969.

Gotoh, S., Manner, M., Sorensen, J. P., and Stewart, W. E.: Binary diffusion coefficients of low-density gases. I. Measurements by modified Loschmidt method, J. Chem. Eng.

Data, 19, 169-171, 1974.

Hargrove, G. L., and Sawyer, D. T.: Determination of gaseous interdiffusion coefficients for solute vapor-carrier gas pairs, Anal. Chem., 39, 244-246, 1967. Muller, C. R., and Cahill, R. W.: Mass Spectrometric Measurement of Diffusion

Coefficients, J. Chem. Phys., 40, 651-654, 1964.

5

1.3 C5H12 (n-pentane, methyl butane, dimethyl butane)

Last evaluated: 10 July 2014

Species Reference T (K) Dm(T) Dm(298) De(T) (De/Dm-1) (%) n-pentane Lugg, 1968 298 64 64 65 2

Arnikar and

Ghule, 1969 353 103 77 88 -15

Barr and Watts,

1972 298 65 65 65 0

Nagasaka, 1973 258 51 51 -1

263 53 52 -3

268 56 54 -3

273 57 56 -2

278 59 58 -1

283 61 59 -3

288 63 61 -3

293 65 63 -3

298 67 67 65 -2

methyl butane Elliott and Watts,

1972 298 71 71 65 -9

dimethyl propane Elliott and Watts, 1972 298 67 67 65 -2

Comments:

n-pentane: The diffusivities of n-pentane at 298 K reported by Lugg (1968), Barr and Watts (1972), Nagasaka (1973) are in good agreement. The differencs between the reported diffusivities reported by these three studies and the estimated values using Fuller"s method are <5%. Arnikar and Ghule (1969) measured its diffusivity at 353 K, 15% larger than the estimated value, and if extrapolated to 298 K, it is significantly larger than those reported by the other three studies. This may suggest that the value reported by

Arnikar and Ghule (1969) is not reliable.

methyl butane: The diffusivity of methyl butane measured at 298 K by Elliott and Watts (1972) is 9% larger than the estimated value. dimethyl propane: The diffusivity of dimethyl propane measured at 298 K by Elliott and Watts (1972) is 2% larger than the estimated value.

Preferred value in N

2 (or air/O2) at 298 K:

n-pentane: (65±2) Torr cm 2 s-1 The preferred diffusivity of n-pentane, (65±2) Torr cm

2 s-1, is the average of those

reported by Lugg (1968), Barr and Watts (1972), and Nagasaka (1973).

6methyl butane: (71±6) Torr cm

2 s-1 The preferred diffusivity of methyl butane, (71±6) Torr cm

2 s-1, is based on the value

reported by Elliott and Watts (1972), and the given uncertainty reflects the difference between the measured and estimated diffusivities. dimethyl propane: (67±2) Torr cm 2 s-1 The preferred diffusivity of dimethyl propane, (71±6) Torr cm

2 s-1, is based on the value

reported by Elliott and Watts (1972), and the given uncertainty reflects the difference between the measured and estimated diffusivities.

Last change in the preferred value: 10 July 2014

References:

Arnikar, H. J., and Ghule, H. M.: Electrodeless discharge as detector in the rapid determination of binary diffusion coefficient of gases, Int. J. Electronics., 26, 159-162, 1969.
Barr, J. K., and Sawyer, D. T.: Studies of the Liquid Phase Mass-Transfer Term in Gas

Chromatography, Anal. Chem., 36, 1753-1759, 1964.

Elliott, R. W., and Watts, H.: Diffusion of some Hydrocarbons in Air: a Regularity in the Diffusion Coefficients of a Homologous Series, Can. J. Chem., 50, 31-34, 1972. Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, Anal. Chem.,

40, 1072-1077, 1968.

Nagasaka, M.: Binary diffusion coefficients of n-pentane in gases, J. Chem. Eng. Data.,

18, 388-390, 1973.

7

1.4 C6H14 (n-hexane, 2,3-dimethyl butane)

Last evaluated: 10 July 2014

Species Reference T (K) Dm(T) Dm(298) De(T) (De/Dm-1) (%) n-hexane Cummings and

Ubbelohde, 1953 289 58 61 56 -3

Altshuller and

Cohen, 1960 298 61 61 59 -3

303 62 61 -1

322 69 67 -2

Lugg, 1968 298 56 56 59 6

Arnikar and Ghule,

1969 353 133 99 79 -41

2,3-dimethyl

butane Cummings and Ubbelohde, 1953 289 57 60 56 -2

Comments:

n-hexane: The diffusivities measured at 298 K by Altshuller and Cohen (1960) and Lugg (1968) agree well, and are also in good agreement with that extrapolated to 298 K from that measured at 289 K by Cummings and Ubbelohde (1953). The difference between the diffusivities measured by these three studies and the estimated values is not larger than

6%. Arnikar and Ghule (1969) measured the diffusivity at 353 K, 41% larger than the

estimated value using Fuller"s method, and if extrapolated to 298 K, it is >50% larger than those reported by the other three studies. This may suggest that the value reported by

Arnikar and Ghule (1969) is not reliable.

2,3-dimethyl butane: The diffusivity measured at 289 K by Cummings and Ubbelohde

(1953) shows excellent agreement with the estimated value.

Preferred value in N

2 (or air/O2) at 298 K:

n-hexane: (59±3) Torr cm 2 s-1 The preferred diffusivity of n-hexane, (59±3) Torr cm

2 s-1, is the average of those

reported by Cummings and Ubbelohde (1953), Altshuller and Coehn (1960) and Lugg (1968) at 298 K (or extrapolated to 298 K if the measurement was not carried out at

298 K).

2,3-dimethyl butane: (60±2) Torr cm

2 s-1 The preferred diffusivity of 2,3-dimethyl butane, (60±2) Torr cm

2 s-1, is extrapolated to

298 K from the measurement of Cummings and Ubbelohde (1953) at 289 K. The given

8uncertainty reflects the normalized difference between the measured and estimated

diffusivities at 289 K.

Last change in the preferred value: 10 July 2014

References:

Altshuller, A. P., and Cohen, I. R.: Application of Diffusion Cells to Production of Known Concentration of Gaseous Hydrocarbons, Anal. Chem., 32, 802-810, 1960. Arnikar, H. J., and Ghule, H. M.: Electrodeless discharge as detector in the rapid determination of binary diffusion coefficient of gases, Int. J. Electronics., 26, 159-162, 1969.
Cummings, G. A. M., and Ubbelohde, A. R.: Collision diameters of flexible hydrocarbon molecules in the vapour phase : the "hydrogen effect.", J. Chem. Soc., 3751-3755, 1953.
Lugg, G. A.: Diffusion coefficients of some organic and other vapors in air, Anal. Chem.,

40, 1072-1077, 1968.

9

1.5 C7H16 (n-heptane, 2,4-dimethyl pentane)

Last evaluated: 10 July 2014

Species Reference T (K) Dm(T) Dm(298) De(T) (De/Dm-1) (%) n-heptane Cummings et al., 1955 303 56 55 56 -1

Clarke and Ubbelohde,

1957 303 56 55 56 0

Altshuller and Cohen,

1960 290 54 56 52 -3

338 64 68 6

2,4-dimethyl

pentane Clarke and Ubbelohde, 1957 303 57 55 56 -1

Comments:

n-heptane: The measured diffusvities (Cummings et al., 1955; Clarke and Ubbelohde,

1957; Altshuller and Cohen) over 290-338 K show excellent agreement with the

estimated values. If extrapolated to 298 K, all three studies agree well with each other.

2,4-dimethyl pentane: The only measurement by Clarke and Ubbelohde (1957) shows

excellent agreement with the estimation.

Preferred value in N

2 (or air/O2) at 298 K:

n-heptane: (55±2) Torr cm 2 s-1 The preferred diffusivity of n-heptane, (59±2) Torr cm

2 s-1, is the average of those

extrapolated to 298 K from those measured at 303 K by Cuymmings et al. (1955) and Clarke and Ubbelohde (1957) and at 290 K by Altshuller and Cohen (1960). The given uncertainty reflects the difference between the measurement and estimation.

2,4-dimethyl pentane: (55±2) Torr cm

2 s-1 The measurement by Clark and Ubbelohde (1957) at 303 K is preferred, and it gives a lue of 55 Torr cm

2 s-1 after being extrapolated to 298 K.

Last change in the preferred value: 10 July 2014

References:

Altshuller, A. P., and Cohen, I. R.: Application of Diffusion Cells to Production of Known Concentration of Gaseous Hydrocarbons, Anal. Chem., 32, 802-810, 1960. Clarke, J. K., and Ubbelohde, A. R.: Isotope effects in diffusion cross-sections for flexible hydrocarbons, J. Chem. Soc., 2050-2055, 1957. 10 Cummings, G. A. M., McLaughlin, E., and Ubbelohde, A. R.: Collision parameters of C6-C9 hydrocarbons in the vapour phase: the hydrogen effect, J. Chem. Soc., 1141-

1144, 1955.

11

1.6 C8H18 (n-octane, 2,2,4-trimethyl pentane)

Last evaluated: 10 July 2014

Species Reference T (K) Dm(T) Dm(298) De(T) (De/Dm-1) (%) n-octane Mack, 1925 298 46 46 50 9

Cummings and

Ubbelohde, 1953 303 54 52 52 -4

Clarke and

Ubbelohde, 1957 303 55 54 52 -6

Lugg, 1968 298 47 47 50 7

2,2,4-trimethyl

pentane Cummings and Ubbelohde, 1953 303 54 53 52 -4

Clarke and

Ubbelohde, 1957 303 54 53 52 -3

Comments:

n-octane: The measured diffusvities at 298 K by the two studies (Mack, 1925; Lugg,

1968) agree well. The other two studies (Cummings and Ubbelohde, 1953; Clarke and

Ubbelohde) measured it at 303 K, and the reported values, after being extrapolated to 298 K, show good agreement with these reported by Mack (1925) and Lugg (1968). The differences between the measured and estimated diffusivities at 298 and 303 K are <10%.

2,2,4-trimethyl pentane: The measured diffusivities at 303 K, reported by Cummings

and Ubbelohde (1953) and Clarke and Ubbelohde (1957) are in good agreement, and are only 4% different from the estimated values using Fuller"s method.

Preferred value in N

2 (or air/O2) at 298 K:

n-octane: (50±4) Torr cm 2 s-1 The preferred diffusivity of n-octane at 298 K, (50±4) Torr cmquotesdbs_dbs29.pdfusesText_35
[PDF] Evaluation volcanisme - Académie de Nancy-Metz

[PDF] CLASSE : 5ème CONTROLE sur le chapitre : PRISMES ET

[PDF] Séquence : LE SURRÉALISME : UNE VISION DU RÉEL

[PDF] Niveau de classe : 3ème Partie de programme : Unité et diversité

[PDF] Évaluation - Sciences ac Bordeaux

[PDF] evaluation 5e SVT - Travailler ? développer des compétences ?

[PDF] Des exemples d 'évaluation par compétence en classe de 6ème

[PDF] Evaluation du chapitre « L 'occupation du milieu au cours des

[PDF] Microsoft PowerPoint - les synonymes CE1 [Mode de compatibilit\351]

[PDF] Vocabulaire CM1 : Synonymes/Antonymes - MA MAITRESSE DE

[PDF] L 'évaluation en Bac Pro - Lyon

[PDF] GUIDE DE PRATIQUE POUR LE DIAGNOSTIC ET LE TRAITEMENT

[PDF] RECONNAITRE ET SCHEMATISER LE MATERIEL DE CHIMIE N

[PDF] RECONNAITRE ET SCHEMATISER LE MATERIEL DE CHIMIE N

[PDF] Evaluation La voix passive - Enseigner et partager