[PDF] Cours de probabilités et statistiques





Previous PDF Next PDF



INFORMATION CHIFFRÉE

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. INFORMATION CHIFFRÉE Partie 1 : Proportion et pourcentage. 1. Proportion. Exemple :.



LATEX pour le prof de maths !

11 janv. 2021 CHAPITRE 3. MISE EN FORME – MISE EN VALEUR DU TEXTE. • Avec le mode gray et une valeur comprise entre 0 et 1 qui est le pourcentage de ...



Statistique Descriptive Multidimensionnelle (pour les nuls)

multidimensionnelle : l'Analyse en Composantes Principales (chapitre 1) l'Analyse La colonne pct. var



Cours de probabilités et statistiques

Quelle est la probabilité qu'elle ait plus de deux ans et des fleurs jaunes ? Page 14. 14. CHAPITRE 1. LE MOD`ELE PROBABILISTE. Exercice 10 — Deux 



Cours de Statistiques inférentielles

On observe une fréquence f1 dans la population 1 de taille n1 et f2 dans la population 2 de taille n2. Page 46. 46. CHAPITRE 8. TEST SUR LES POURCENTAGES. On 



Modélisation et simulation des systèmes de production: une

7 mai 2013 Chapitre 1 Systèmes de Production et Gestion de Production ... utilitaires ou mathématiques etc: La figure suivante (figure 4-1) décrit.



Statistiques descriptives et exercices

Courriels : abdennasser.chekroun@gmail.com / chekroun@math.univ-lyon1.fr Pour le calcul on utilise (voir Chapitre 2



Cours de statistique descriptive - Archive ouverte HAL

2 août 2016 CHAPITRE 1. PRÉSENTATION DES DONNÉES. La statistique est une méthode scientifique qui consiste à réunir des données chiffrées sur des.



SCIENCES DE LINGENIEUR

CHAPITRE 1 : REPRESENTATION ET CODAGE DE L'INFORMATION BINAIRE. etc.) produit l'évaporation de l'eau. Cette vapeur sous pression permet d'entraîner une ...



BASES DE DONNÉES ET MODÈLES DE CALCUL

PARTIE 1. LES BASES DE DONNÉES. CHAPITRE 2 • INTRODUCTION. 25. 2.1 L'utilisateur et les données 6.10.6 Les problèmes de l'information incomplète en SQL.

Cours de probabilités et statistiques

Stage ATSM - Ao^ut 2010

Cours de probabilit

´es et statistiques

A. Perrut

contact : Anne.Perrut@univ-lyon1.fr 2

Table des matiµeres

1 Le modµele probabiliste 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Trois autres lois discrµetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Loi de Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Loi d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Loi uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 La loi normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 La loi exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Fonction d'une v.a. continue . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Intervalles de con¯ance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3

4TABLE DES MATIµERES

5 Tests statistiques 47

5.1 Tests d'hypothµeses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Test d'ajustement du chi-deux . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B Tables statistiques 61

C.1 Variable quantitative discrµete . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C.2 Variable quantitative continue . . . . . . . . . . . . . . . . . . . . . . . . . . 68 C.3 Variable qualitative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Chapitre 1

Le modµele probabiliste

1.1 Introduction

Exemples :

- l'enfant µa na^³tre sera une ¯lle, - Proportion :

P(A) =3

6 = 1=2. Alors

P(¯lle) = limn!+1k

n n mais cette limite a-t-elle un sens? - Opinion : pour que l'OL soit championne de France? Dans ce cas, on ne peut pas rejouer le m^eme subjectif. 5

6CHAPITRE 1. LE MODµELE PROBABILISTE

Exemples :

\Lyon ne gagne pas". chi®re pair", ieA=f2;4;6g. jcelui du second.

B: \on obtient pile au deuxiµeme lancer" est

B=f(f;p;f);(f;p;p);(p;p;f);(p;p;p)g

le nombre de \face" obtenus. Alors, =f0;1;2;3g. Le modµele est beaucoup plus simple, notations vocabulaire ensembliste vocabulaire probabiliste ensemble plein ensemble vide A sous-ensemble de !2A !appartient µaA

A½B

Ainclus dansB

AimpliqueB

A[B AouB A\B intersection deAetB AetB A cou A A\B=;

AetBdisjoints

AetBincompatibles

Exemple : soit =f0;1;2g. ConstruisonsP().

P() =n

;;f0g;f1g;f2g;f0;1g;f0;2g;f1;2g;o telle que : -P(A) =X -P() =X !2P(!) = 1

0.95 :Ava trµes probablement se produire.

4.0 : incorrect.

-2 : incorrect.

0.5 : une chance sur deux.

8CHAPITRE 1. LE MODµELE PROBABILISTE

faire quelques calculs :

1) SiAetBsont incompatibles,P(A[B) =P(A) +P(B).

2)P(Ac) = 1¡P(A).

3)P(;) = 0.

5)P(A[B) =P(A) +P(B)¡P(A\B).

2) CommeAetAcsont incompatibles,1 =P() =P(A[Ac) =P(A) +P(Ac).

3)P(;) = 1¡P(;c) = 1¡P() = 0.

P i2NA i´ =X i2NP(Ai) - axiome 3 :P() = 1

1 =P() =X

!2P(!) =X !2p=p£card()

D'oµup=P(!) =1

card()

P(A) =X

!2AP(!) =card(A) card() dire : - choisir, par

P(BjA) =P(A\B)

P(A) Utilisation 2 : QuandP(BjA)etP(A)sont faciles µa trouver, on peut obtenirP(A\B). Exemple 6Une urne contientrboules rouges etvboules vertes. On en tire deux, l'une =frouge;verteg £ frouge;verteg rouge".

P(A\B) =P(BjA)P(A) =r¡1

r+v¡1¢r r+v

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

10CHAPITRE 1. LE MODµELE PROBABILISTE

preuve : CommeA[Ac= ,P(B) =P(B\(A[Ac)) =P((B\A)[(B\Ac)). OrB\A

P(B) =P(B\A) +P(B\Ac)

On garde le m^eme formalisme.

P(B) =P(BjA)P(A) +P(BjAc)P(Ac)

r¡1 r+v¡1¢r r+v+r r+v¡1¢v r+v =r r+v (i)[i2IAi= (ii) lesAisont deux µa deux incompatibles : pour tousi6=j,Ai\Aj=;.

P(B) =X

i2IP(BjAi)P(Ai) dans l'ordre chronologique. Nous allons maintenant voir une formule µa remonter le temps...

1etP(B)>0. Alors,

P(AjB) =P(BjA)P(A)

P(BjA)P(A) +P(BjAc)P(Ac)

preuve :

P(AjB) =P(A\B)

P(B)=P(BjA)P(A)

P(B) i2I,

P(AijB) =P(BjAi)P(Ai)

P j2IP(BjAj)P(Aj) bleaux sur informatique. Les tableaux deAcomportent des fautes dans 5,2% des cas et ceux deBdans 6,7% des cas. On prend un tableau au hasard. Il comporte des fautes. T T

F=\ le tableau comporte des fautes".

P(TAjF) =P(FjTA)P(TA)

P(FjTA)P(TA) +P(FjTB)P(TB)

P(A\B) =P(A)P(B)

P(BjA) =P(B)()P(AjB) =P(A)()P(A\B) =P(A)P(B)

Proposition 14Soit =E£FoµuEest de cardinalnetFde cardinalp. Supposons que

P(!) =P((x;y)) =1

card() =1 np =PE(fxg)PF(fyg) =fP;Fg £ f1;:::;6g

12CHAPITRE 1. LE MODµELE PROBABILISTE

8!2; P(!) =1

card() = 1=12 P N³ (!1;:::;!N)´ =P(!1)¢¢¢P(!N) surN. Pourtant, le nombre de combinaisons dont la somme fait 12 est le m^eme que le nombre de combinaisons dont la somme fait 11. Alors?

1.6 Exercices

3) On tire trois cartes dans un jeu .

suppose que

P(A[B) = 7=8; P(A\B) = 1=4; P(A) = 3=8:

CalculerP(B),P(A\Bc),P(B\Ac).

ros impairs ont chacun la m^eme chance d'appara^³tre, chance qui est deux fois plus grande hasard, et l'on observe que les quatre places libres se suivent. Est-ce surprenant?

1.6. EXERCICES13

Exercice 6 {SoientM1,M2,M3trois personnes. La premiµereM1dispose d'une infor- la transmet µaM3. Malheureusement, µa chaque fois que l'information est transmise, il y a le bon message? Et siM3transmet l'information dont il dispose µa une quatriµeme personneM4, quelle est elle re»coit un vaccin? daire? Exercice 8 |Dans une usine, la machine A fabrique 60% des piµeces, dont 2% sont C? Exercice 9 |Dans une jardinerie : 25% des plantes ont moins d'un an, 60% ont de 1 µa 2 ans, 25% ont des °eurs jaunes, 60% ont des °eurs roses, 15% ont des °eurs jaunes et moins d'un an, 3% ont plus de 2 ans et n'ont ni °eurs jaunes, ni °eurs roses. 15% de celles qui ont de 1 µa 2 ans, ont des °eurs jaunes, 15% de celles qui ont de 1 µa 2 ans, n'ont ni

°eurs jaunes ni °eurs roses. On suppose que les °eurs ne peuvent pas ^etre µa la fois jaunes

et roses. On choisit une plante au hasard dans cette jardinerie.

14CHAPITRE 1. LE MODµELE PROBABILISTE

Exercice 10 |Deux chau®eurs de bus se relaient sur la m^eme ligne. Lors d'une grµeve, le premier a60%de chances de faire grµeve et le second80%. Pendant la prochaine grµeve, Exercice 11 |Une loterie comporte 500 billets dont deux seulement sont gagnants.

Chapitre 2

PPP PPF PFP FPP FFP FPF PFF FFF

valeur deX

3 2 2 2 1 1 1 0

k(valeur prise parX)

3 2 1 0

fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg k(X=k) = 15 elle est ditecontinue(exemples : hauteur d'un arbre, distance de freinage d'une voiture souvent une formule, plut^ot qu'une liste. [X= 3] [X= 2] [X= 1] [X= 0] fPPPg fPPF,PFP,FPPg fPFF,FPF,FFPg fFFFg

1/8 3/8 3/8 1/8

F(x) =P[X·x]

Exemple :Xest le nombre de Face quand on lance trois fois une piµece. On a vu que la loi deXest P[X= 0] = 1=8; P[X= 1] =P[X= 2] = 3=8; P[X= 3] = 1=8

D'oµu,

F(x) =8

>>>>>:0six <0;

1=8si0·x <1;

4=8si1·x <2;

7=8si2·x <3;

1six¸3

1)Fest croissante,

3) lim x! ¡1F(x) = 0;limx!+1F(x) = 1

E[X] =X

kkP[X=k] oµu on somme sur toutes les valeurskque peut prendreX.

E[g(X)] =X

kg(k)P[X=k] preuve : observons queg(X) =yssiX=xavecg(x) =y. Ainsi,

P(g(X) =y) =X

x:g(x)=yP(X=x)

E(Y) =X

yyP(Y=y) =X yX x:g(x)=yg(x)P(X=x) =X xg(x)P(X=x)

Var(X) =Eh

(X¡E[X])2i =X k(k¡E[X])2P[X=k] =E[X2]¡E[X]2 k2X()jkjP(X=k)<1 sa valeur moyenneE[X]. Exemple 18: nous avons la loi du nombreXde PILE quand on lance trois fois une piµece.

E[X] =3X

k=0kP[X=k] = 3¢1 8 + 2¢3 8 + 1¢3 8 + 0¢1 8 =12 8 =3 2

Var(X) =E[X2]¡E[X]2=3X

k=0k

2P[X=k]¡E[X]2

= 3

2¢1

8 + 22¢3 8 + 12¢3 8 + 02¢1 8

¡µ3

2 2 3 4 nbr de PILE [X= 3] [X= 2] [X= 1] [X= 0]

0.125 0.375 0.375 0.125

0.2 0.6 0.1 0.1

partir de quelques observations.

P[X=i;Y=j] =P[X=i]P[Y=j]

P[(X;Y) = (i;j)] =P[X=i;Y=j].

touti2X(),

P[X=i] =X

j2Y()P[X=ijY=j]P[Y=j]

SoitZ=X+Y. Quelle est la loi deZ?

valeur que prendX, la valeur que prendYet la valeur deZ. XnY

1 2 3 4 5 6

1

2 3 4 5 6 7

2

3 4 5 6 7 8

3

4 5 6 7 8 9

4

5 6 7 8 9 10

5

6 7 8 9 10 11

6

7 8 9 10 11 12

pour tous1·i;j·6; P[X=i;Y=j] =P[X=i]P[Y=j] = 1=36

2] =P[Z= 12] = 1=36,P[Z= 3] =P[Z= 11] = 2=36,P[Z= 4] =P[Z= 10] = 3=36,

1·j·12.

P[Z=j] =6X

i=1P[Z=jjX=i]P[X=i] 1 6 6 X i=1P[X+Y=jjX=i] 1 6 6 X i=1P[Y=j¡ijX=i] 1 6 6 X i=1P[Y=j¡i] rappeler queP[Y=k] = 1=6seulement sikest dansf1;:::;6g. preuve : pour le premier point, il faut observer que X yP(X=x;Y=y) =P³ (X=x)\([y(Y=y))´ =P³ (X=x)\´ =P(X=x) et il vient

E[X+Y] =X

x;y(x+y)P(X=x;Y=y) X x;yxP(X=x;Y=y) +X x;yyP(X=x;Y=y) X xxP(X=x) +X yyP(Y=y) =E[X] +E[Y] Pour le second point, on montre tout d'abord queE(XY) =E(X)E(Y), la suite venant facilement. Ainsi,

E[XY] =X

x;yxyP(X=x;Y=y) X x;yxyP(X=x)P(Y=y) µX =E(X)E(Y)

P[Y= 1] =p; P[Y= 0] =q= 1¡p

Var(Y) =E[Y2]¡E[Y]2=E[Y]¡E[Y]2=p(1¡p).

conditions.

P(E) =q= 1¡p.

P(X=k) =µn

p k(1¡p)n¡kpour tout0·k·n oµu ¡n k¢=n! k!(n¡k)!.

P(!) =pk(1¡p)n¡k

Il en existe¡n

P(X=k) =X

!:X(!)=kP(!) = card(f!:X(!) =kg)pk(1¡p)n¡k µn p k(1¡p)n¡k np(1¡p). (preuve) AouB. Puis on le remet dans le lot et on recommence : on choisit µa nouveau un individu binomialeB(n;NA=N). loi binomialeB(4;p).

P(X= 0) =¡4

0¢q4=q4,

P(X= 1) =¡4

1¢p1q3= 4pq3,

P(X= 2) =¡4

2¢p2q2= 6p2q2,

P(X= 3) =¡4

3¢p3q1= 4p3q,

P(X= 4) =¡4

4¢p4=p4.

Pourp= 1=5, on obtient les va-

leurs :0 1 2 3 4

0.0 0.1 0.2 0.3 0.4

Loi binomiale pour n=4, p=1/5

valeurs de X probabilites

Voici d'autres exemples.

0 1 2 3 4 5

0.05 0.15 0.25

Loi binomiale pour n=5, p=0.5

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20

Loi binomiale pour n=10, p=0.5

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20 0.30

Loi binomiale pour n=10, p=0.2

valeurs de X probabilites

0 2 4 6 8 10

0.00 0.10 0.20 0.30

Loi binomiale pour n=10, p=0.8

valeurs de X probabilites X=nX i=1Y i

2.4. TROIS AUTRES LOIS DISCRµETES23

par le traitement?

P[X·6] =P[X= 0] +P[X= 1] +¢¢¢+P[X= 6]

1 2

15³

µ15

+µ15 +µ15 +µ15 +µ15 +µ15 +µ15 1 2

15(1 + 15 + 105 + 455 + 1365 + 3003 + 5005)

= 0:304 P[6·X·10] =P[X= 6] +P[X= 7] +P[X= 8] +P[X= 9] +P[X= 10] = 0:790 P[X¸12] =P[X= 12] +P[X= 13] +P[X= 14] +P[X= 15] = (455 + 105 + 15 + 1)=215 = 0:018

En¯n,E[X] = 15=2 = 7;5.

2.4 Trois autres lois discrµetes

8k= 1;2;::: P[Y=k] =p(1¡p)k¡1

preuve : admettons tout d'abord que, sur[0;1[, 1X k=0x 0 =1X k=0(xk)0=1X k=1kx k¡1quotesdbs_dbs29.pdfusesText_35
[PDF] Taux d 'évolution

[PDF] Évolutions, cours, 1 STMG - MathsFG - Free

[PDF] evolutions - Maths-et-tiques

[PDF] Prise en charge des exacerbations aiguës de BPCO en pratique

[PDF] 5ème Primaire Ecoles El Nozha 2ème Terme - Nozha Language

[PDF] Exercices : Algèbre bilinéaire - Normalesuporg

[PDF] Algorithmique - Faculté des Sciences de Rabat

[PDF] Examen d 'informatique (Algorithmique)

[PDF] Recueil d 'Examens (1997 - 2009) Analyse Numérique - lamsin

[PDF] Cours offerts Examens de reprise sans cours Frais et - CSDM

[PDF] Architecture des ordinateurs Corrigé de l 'examen

[PDF] Le baccalauréat 2016 - Session de juin - Ministère de l 'Éducation

[PDF] 2

[PDF] Corrigé Examen Final Bases de Données (2010/2011) - essai

[PDF] Épreuve d 'économie familiale - Classe de troisieme