[PDF] Atomistique Corrigé PREMIER EXERCICE. L'ANTIMOINE Sb.





Previous PDF Next PDF



Atomistique et Chimie Organique Cours et Exercices Corrigés

Remarque : Chaque orbitale atomique est donc caractérisée par une combinaison des trois nombres quantiques n l et m. Page 14. Chapitre I: Atomistique. Chimie 1 



Atomistique Corrigé

20 февр. 2019 г. PREMIER EXERCICE. L'ANTIMOINE Sb. Le numéro atomique de l'antimoine est Z = 51. Son nom vient du grec anti-monis signifiant « pas seul » en.



EXERCICES-ATOMISTIQUE.pdf

CORRIGE DU RATTRAPAGE Série 4 - Ennoncé des Exercices -. Exercice l. 1) Calculer l'énergie d'ionisation de l'atome du Fluore cf en eV. 2) Calculer les ...



Atomistique – Examen Corrigé

LCU5 – Atomistique : Examen Juin 2001 - Corrigé. Atomistique – Examen. Corrigé. 1) Les orbitales 2s et 2pz ont la même valeur de m =0 ⇒ recouvrement possible 



Exercice corrige chimie atomistique pdf

AccueilSMPC1TD et Exercices corrigés Atomistique Smpc 1 PDF TD et Exercices corrigés Atomistique Smpc PDF Problème avec corrigés Atomistique SMP1 SMC1 PDF 



Exercice de chimie générale atomistique corrigé pdf

AccueilSMPC1TD et Exercices corrigés Atomistique Smpc 1 PDF TD et Exercices corrigés Atomistique Smpc PDF Problème avec corrigés Atomistique SMP1 SMC1 PDF 



Untitled

Contrôle Final de l'élément Atomistique. Durée: 1h30. Exercice I: Le soufre (Z = 16) est présent dans la nature sous forme de quatre isotopes stables: 325. 33S.



1 EXERCICES ATOMISTIQUE

Page 1. 1. EXERCICES ATOMISTIQUE l l. Page 2. 2. Page 3. 3.



SUPPORT PAPIER DU COURS NECESSAIRE TRES UTILE

Queyrel Atomistique et Structures



Untitled

Atomistique et liaison chimique exercices corrigés pdf. ADVERTISEMENT Aidez la recherche scientifique Veuillez S.V.P répondre à ce questionnaire. 2 min 



X A Rb Rb

Corrigé de Série n°1 : Exercices d'atomistique. Données à utiliser en cas de besoin : Intitulé. Symbole. Valeur en M.K.S.A. Masse du proton.



Atomistique et Chimie Organique Cours et Exercices Corrigés

Remarque : Chaque orbitale atomique est donc caractérisée par une combinaison des trois nombres quantiques n l et m. Page 14. Chapitre I: Atomistique. Chimie 1 



Atomistique Corrigé

PREMIER EXERCICE. L'ANTIMOINE Sb. Le numéro atomique de l'antimoine est Z = 51. Son nom vient du grec anti-monis signifiant « pas seul » en.



LCU5 – Atomistique : Examen Juin 2001 - Corrigé

Atomistique – Examen. Corrigé. 1) Les orbitales 2s et 2pz ont la même valeur de m =0 ? recouvrement possible. Les orbitales 2px et 2py ont une valeur de.



ATOMISTIQUE

d) Etablir une formule générale permettant le calcul de ces deux limites. Calculer 1 et. lim pour les 4 premières séries. Corrigé. Exercice 3 :.



exercices corriges de structure de la matiere et de liaisons chimiques

Exercices corrigés de structure de la matière et de liaisons chimiques. 13. Définitions et notions devant être acquises : Atome - Electron -Proton –.



Rappels atomistiques structure des métaux

http://campus.cerimes.fr/odontologie/enseignement/chap1/site/html/cours.pdf



SOLlJllON DES EXERCICES DE LA SERIE 1

électron. Exercice Ill. Soit un proton de masse m = 167 10·2"g



Untitled

Contrôle Final de l'élément Atomistique. Durée: 1h30. Exercice 1: Le soufre (Z = 16) est présent dans la nature sous forme de quatre isotopes stables :.



I ATOMISTIQUE

les valeurs numériques données à la fin de chaque exercice et simplifier au maximum avant d'effectuer un calcul à la main). Corrigé. I - ATOMISTIQUE.

1PCSI Devoir Surveillé 3 Jeudi20décembre2018AtomistiqueCorrigéENGUISED'INTRODUCTION:LESALLUMETTES

2(PASDEQUESTION)Quellechimiepermetauxallumettesdes'enflammer?Lesdeuxpro blèmesquivous sontproposéscetaprès-midisontcon sacrésàdeux élémentsprésentsdansl'allumette:l'antimoinetoutd'abordpuislepotassium.PREMIER EXERCICE L'ANTIMOINESbLenuméroatomiquedel'antimoineestZ=51.Sonnomvientdugrecanti-monissignifiant"passeul»enréférenceaufaitqu'ilsetr ouvetouj ourscombinéà unautreélément.Lesulfured'antimoine,dunomdestibine,étaitutiliséparleségyptienspoursemaquillerlesyeux.C'estluiquiadonnésonsymboleSbàl'élément.Lateneur moyennedel'écorceterrest reestde0,2ppmd'antimoine(62èmeélémentleplusabondant).Lesprincipauxmineraiscontenantdel'antimoinesontsulfurés,sousformedestibineSb2S3,dej amesonite Pb2Sb2S5,detétr aédriteC u12Sb4S13.Des mineraisoxy dés,valentiniteetsenarmontite(Sb2O3)sont égalementexpl oités.L'or,l'argentetlemercureaccompagnentsouventl'antimoinedanssesminerais.

3A. L'antimoine : l'élément Lesitewebelementsindiquequel'antimoinepossèdeprincipalementdeuxisotopes:Isotopeí µí µí µí µí µí µí µí µí µí µAbondancenaturelleen%57,242,81) Préciserlacompositiond'unnoyaudel'isotopeleplusabondantdel'antimoine121Sb.Lenombredemassedel'isotopeleplusabondantestA=121.Lenuméroatomiquedel'antimoineestZ=51,lenoyaurenfermedonc51protons.Lecomplémentpouratteindre121estlenombredeneutronsdonclenoyaudecetisotoperenferme:51protons70neutrons2) Déterminerlamassemolairedel'élémentantimoine.Lamassemolairede l'élémentant imoinesecalculeenadditionnantlesmassesmolairesdesdifférentsisotopesaffectésdeleurabondance;onsaitdeplusquelamassemolaireestpresqueégaleaunombredemassed'unisotope.Ainsi:M(Sb)=0,572x121+0,428x123=121,86soitM(Sb)=121,9g.mol-1.3) Enoncerlarègled eKlechkowski, etl'utiliserpour prévoirlaconf igurationélectroniquefondamentaled'unatomed'antimoinedanssonétatfondamental.LarègledeKlechkowskis'énonceainsi:"Lesorbitalesatomiquesseremplissentparvaleurdelasomme(n+l)croissante;à(n+l)constant,ellesseremplissentparvaleurdencroissante».AlorslaconfigurationélectroniquefondamentaledeSbs'écrit,àl'étatfondamental:1s22s22p63s23p64s23d104p65s24d105p3soitenréordonnantlesorbitalesparvaleurdecroissante:1s22s22p63s23p63d104s24p64d105s25p3ouenutilisantlaconfigurationélectroniquedukryptonKr(Z=36):[36Kr]4d105s25p34) Combienl'antimoinepossède-t-ild'électronsdevalence?LesélectronsdevalencedeSbsontceuxquisontassociésiciaunombrequantiquenle

4plusélevé,c'estàdiren=5(lasous-couche4dn'estpasencoursderemplissage):Sbpossède5électronsdevalence:5s25p3.5) Combiend'électronscélibatairesunatomed'antimoinepossède-t-il?Donnerlesvaleursdesnombresquantiquesquepossèdentcesélectronscélibataires.D'aprèslarègledeHund,leremplissagedelasous-couche5pestlesuivant:Alorsonremarquequel'antimoinepossède3électronsnonappariés,oucélibataires.Ces3électrons5psonttousdanslemêmeétatdespin,ilsdiffèrentparlavaleurdunombrequantiquemagnétiqueml:nlmlmsnlmlms51-1½51-1-½510½510-½511½511-½6) Déterminerlescoordonnéesdel'antimoinedanslaclassificationpériodiquedeséléments:àquellecolonneappartient-il?Aquellepériode?Pourl'antimoine,lenombrequantiqueprincipalnalavaleurmaximalenmax=5doncSbappartientàla5èmepériodeetsaconfigurationsetermineennp3doncilestdanslatroisièmecolonnedublocpsoitla15èmecolonnedelaclassification(2+10+3=15).Sb:colonne15;période5.7) L'antimoineest-ilunmétalouunnon-métal?Citerunepropriétéexpérimentalequipermetdetranchersansambiguïtécettequestion.Parsapositiondanslaclassificationpériodique,l'antimoinen'estpasunmétalmaisunmétall oïde.Ilpossèdecertainespropriétésdesmétaux commel'éclatmétallique.Pourtranchers ansambiguïtécecaractère nonmétallique, ilfaudrait étudiersaconductivitéenfonctiondelatemp érature carpourunmétal,laconductivitédiminuelorsquelatempératureaugmente.

58) Toutenbasdelacolonnedel'antimoine,setrouvelemoscovium(Mc).Pourquoinetrouvepasdedonnéessursespropriétéschimiques?Onnetrouveaucunedonnéeconcernantlemoscoviumcarc'estl'élémentdenuméroatomiqueZ=115(51+32+32)etaujourd'hui,seulsquelquesatomesdecetélém entonté tédétectés,leurexistenceétantfugace.Noussommesdonc bienloind'av oirsuffisamment d'atomesdecet élémentpourpouvoirl'étudier.Dansl'antiquité,lesfemmeségyptiennesseservaientdel'antimoinecommefardàcils.EllesutilisaientpourceladelastibineSb2S3(noir),sulfured'antimoine.Ondonnelesélectronégativitéssuivantes:χP(Sb)=2,05etχP(S)=2,58.9) Rappelerladéfinitiondel'électronégativité.L'indice"P»faitréférenceàl'unedeséchellesd'électronégativitétrèsutilisées.Aquelchimisteladoit-on?"L'électronégativitétraduitl'aptitudequ'aun atomeàattireràluiles électronsdesliaisonsauxquellesilparticipedansunédifice».Uneéchelletrèsutiliséeparleschimistesestl'échelledeLinusPauling(1932).10) Apa rtirdesélectronéga tivitésdonnées,indiquerquelssontles deuxionsprésentsdansSb2S3etjustifieralorslastoechiométriedecesulfure.Lesoufreestplusélectronégatifquel'antimoine:ilatendanceàaccepterouprendredesélect rons;ainsi ilacquiert laconfigurat iondugazrarequile suitdanslaclassification,àsavoirl'argon:Sdonnel'ionS2-.L'antimoine,moinsélectronégatif,valuicéder3deses5électronsdevalenceetvadonnerl'ionSb3+.Nousavonsdoncunassemblaged'ionsS2-etd'ionsSb3+.Commecesulfu redoitê treélectriquementneutr e,alorsnous devonsprendrerassembler3ionsS2-et2ionsSb3+.D'oùlasotoechiométriedusulfured'antimoine:Sb2S3.B. Les sulfures d'antimoine, et l'acide " magique » Lepenta fluorured'antimoineSbF5réagitavecl'acidefl uorhydriqueHFet donne([H2F]+[SbF6]-.C'est un"superacide»capa bledeprotonertouslescomposésorganiquesendonnant decarb ocations(PrixNobeldeGeorgeOlahen 1994).Avecl'acidefluorosulfuriqueHSO3F,onobtientmêmeunacideencoreplusfort,affublédunomde"magique»,[(HO)2SOF]+[SO3F-SbF5]-.11) ProposerunschémadeLewis pourlepentaf luorured'antimoineSbF5.OnrappellequelefluorestlepremierdeshalogènesetquesonnuméroatomiqueestZ(F)=9.LenuméroatomiquedeFestZ=9.Saconfigurationélectroniqueest1s22s22p5.Ilpossède7électronsdevalence.

6SbF5:5+5x7=40électronsdevalence.40/2=20doubletsd'électrons.Proposons:12) Letrifluorured'antimoineexiste,appeléréactifdeSwart,estobtenuàpartirdeSbF5etapourformuleSbF3.ProposerleschémadeLewisdeSbF3.Delamêmefaçon:SbF3:5+3x7=26électronsdevalence.26/2=13doubletsd'électrons.Proposons:13) L'azoteNappartientàlamêmecolonnequel'antimoine.SonnuméroatomiqueestZ(N)=7.LesdeuxhalogénuresNF3etNF5peuvent-ilsexisteraussi?Justifiervotreréponse.Laconfigurationélectroniquedel'atomed'azoteest:1s22s22p3.Ilpossèdeaussi5électronsdevalence.MaisseulelamoléculeNF3existe,maispasNF5carl'atomed'azotenepossèdepasd'orbitales"nd»vaca ntes,tandisquel'antimoinep ossèdeluiunesous-couche5ddisponible.NF5n'existepasetSbF5existeparcequel'antimoineesthypervalent.Lepentafluorured'antimoineaétélepremierréactifconnupermettantdeproduiredudifluorF2àpartirdefluorures,enraisondelatrèsgrandeaffinitédeSbF5pourl'ionfluorureF-:4SbF5+2K2MnF6→4KSbF6+2MnF3+F2.14) ProposerunschémadeLewispourlamoléculededifluorF2.Pourquoitrouve-t-onl'halogèneXsouslaformeducorpssimpleX2?LenuméroatomiquedeFestZ=9.Saconfigurationélectroniqueest1s22s22p5.Ilpossède7électronsdevalence.F2:2x7=14et14/2=7doubletsd'électrons.

7Proposons:LesatomesXs'unissen tpour formerlesmoléculesX2enéta blissantuneliaisoncovalentecarainsi,ilscomplètentleurcouchedevalenceavec8électrons.Enmai1968,OlahetsescollaborateursontréussilaconversionduméthaneCH4encarbocationterbutyle+C(CH3)3parl'acidemagiqueà140°C.Laréactioncommenceparlaprotonationduméthane enméthaniumCH5+,qui sedissocie immédiateme ntendihydrogèneH2etméthyliumCH3+,ced ernierr éagissantàsontourave cleméthanerestant.15) LenuméroatomiquedeHest1,celuideCest6.EcrireleschémadeLewisducarbocationCH3+.Commentqualifie-t-onunetelleespèceausensdeLewis? CH3+:4+3x1-1=6électronsdevalence;6/2=3doublets.Proposons:L'atomedecarboneestdéficitaireenélectrons:ilpossèdeunelacuneélectronique,mettantenévidencelapossibilitéd'accueillirundoubletd'électronsqu'ilpossède.AusensdeLewis,c'estunacide:uncarbocationestunacideausensdeLewis.SECOND EXERCICE LEPOTASSIUMKC'estDavyquidécouvritlepotassium,unjourd'octobre1807,alorsqu'ilvenai tdedécouvrirun autreélémentdecet tefamille.Sonnomvientdelapotasse(potash,littéralementpotdecendres)quiétaitunesolutiondecendredevégétauxmélangésàl'eau.LesymboleK,vientdesonautrenom,lekalyum,donnéparlechimistesuédoisBerzeliusenréférenceàlaplantekali(salicorne)richeenpotassium.Berzeliusinventalesystèmedesymboleetgardadonclesymboleactuelpourcetélément:K.Donnéespourl'ensembleduproblème:

8ConstantedePlanck:h=6,63.10-34J.sCéléritédelalumière:c=3,0.108m.s-1Constanted'Avogadro:N=6,02.1023mol-11eV=1,6.10-19Jnumérosatomiques:K:19;O:8;Cl:17;Zn:30A. L'élément potassium LenuméroatomiquedupotassiumestZ=19.16) Ecrirelaconfigurati onélect roniquefondamentaledel'atomedepotassiu mKdanssonétatfondamental.Laconfigurationélectroniquefondamentaledel'atomedepotassiumest:1s22s22p63s23p64s117) LamassemolairedupotassiumestM(K)=39,1g.mol-1.Donnerlesymboledel'isotopeleplusabondantetpréciserlacompositiondesonnoyau.Cettemassemolaireestassezprochede39,doncparmitoussesisotopes,l'isotopedenombredemasseA=39doitêtreceluiquiestmajoritaire;sonsymboleest:í µí µí µí µí µSonnoyaurenferme19protonset20neutrons.18) Aquellefamilledutableaupériodiqueappartientlepotassium?Lepotassiumestunalcalin,commelelithiumLi,lesodiumNa,lerubidiumRb,lecésiumCsetlefranciumFr.L'élémentdécouvertparDavyaumêmemomentestceluiquiestsituéjusteaudessusdansletableauactuel:lesodium,Na.19) Quelestlenuméroatomiquedusodium?Ilestsituéaudessusalorssaconfigurationestlasuivante:1s22s22p63s1;l'additiondesélectronsdonne11:lenuméroatomiquedeNaestZ=11.Surlapage Wikipédi adupotassium, onpeutlirececi:"Lepotassiumestl'élémentchimiquedenuméroatomique19,desymbol eK(dulatinkalium).C'estunmétalmou,d'aspectblancmétallique,légèrementbleuté,quel'ontrouvenaturellementliéàd'autresélémentsdansl'eaud emeretdansdeno mbreuxminéraux.I ls'ox yderapidement aucontactdel'airetréagitviolemmentavecl'eau.Ilressemblechimiquementausodium».

920) Citezdeuxpropriétésdesmétauxquiillustrentcetaspect"mou»dupotassiummétallique.Lecaractèremoudupotassiumillustresespropriétésdeductilité("quipeutêtreétirésousformedefil;possibilitédedéformationsansrupture»)etdemalléabilité("peutêtredéformé,commeparexempleaplatisousformedefeuilles»).21) Dequel leentitéioniquedel'éléme ntpotassiums'agit-illorsqu'"onletrouvenaturellementliéàd'autresélémentsdansl'eaudemer»?Justifiervotreréponse.Lepotassiumpossèdeunélectrondevalence,etilestsituédanslapartiegauchedutableaupério dique,doncilesttrèspeuélectroné gatif,etcèdetrè sfacile mentsonélectrondevalence:onretrouvel'élémentpotassiumsouslaformed'ionK+.22) Revenonsuninstantànotreallumette.Leboutonestconstituéd'uncomburant:KClO3,etd'uncombustibleformédecollesorganiquesetd'autresproduitstelsqueZnOquitempère lacombustion,desab rasifs(p oudredeverre),del'agglomérant(gélatine),descolorants.a) Apartirdevotreréponseàlaquestionprécédente,endéduirelachargexdel'édificeClO3x.CommelepotassiumestprésentsouslaformeioniqueK+,alorsl'ionchlorateestl'ionClO3-,doncx=1.b) ProposerunschémadeLewispourcetédifice.Clpossède7électronsdevalence(halogène)Opossède6électronsdevalence7+3x6+1=26électronsdevalence;26/2=13doubletsd'électronsc) Donnerunedéfinitionclaired'uncomburantetd'uncombustible.Uncomburantestunoxydant,doncuneespècequigagnedoncdesélectrons:c'estKClO3.Uncarburantestunréducteur,doncuneespècequicèdedesélectrons.d) L'iondel'élémentZnprésentdansZnOestZn2+.Ecrirelaconfigurationélectroniquefondamentaledecetion.

10Configurationélectroniquedel'atomedezinc:1s22s22p63s23p64s23d10Configurationélectroniquedel'ionZn2+:1s22s22p63s23p63d10carcesontlesélectrons4squipartentlespremiers.B- Propriétés chimiques du potassium 23) "Lepotassiums'oxyderapidementaucontactdel'air».Ecrirel'équationdelaréactionrendantcomptedecetteobservation.Sousl'actiondel'air,lepotassiumsubituneréactiond'oxydationparledioxygène:2K(s)+½O2(g)=K2O(s)24) Commelesodium,lepotassium"réagitviolemmentavecl'eau».Ecrirel'équationdelaréaction-violente-dupotassiumsurl'eau.Lepotassiumestunréducteurtrèstrèsfort,etquiréduitl'ion:ilyaundégagementdedihydrogèneobservé:Premièredemi-équation:K(s)=K++e-Secondedemi-équation:2H2O(l)+2e-=2HO-+H2(g)Soit:2K(s)+2H2O(l)=2K++2HO-+H2(g)25) Quellespropriétésdup otassiumillustrentcesdeuxréactions:oxyda ntesouréductrices?Cesdeuxréactionsillustrentlestrèsbonnespropriétésréductricesdupotassium.C- Autour du spectre d'émission/absorption du potassium Voicilediagra mmeénergétiquedupotassium ,quel'on trouver surle siteNationalInstituteofStandardsandTechnology(NIST).Aucuneconnaissanceapprofondiesurcesdiagrammesn'estnécessairepourrépondreauxquestionsposées.Iln'yaaucunementbesoindesécartsd'énergieexprimésenMHz.

1126) Lorsqu'oneffectueuntestdeflammeaveclepotassium,unecouleurvioletteestémise.Indiquer,àpartirdudiagramme,quelle(s)est(sont)la(es)transition(s)quiest(sont)responsable(s)decettecouleurviolette,enfaisantunpetitschématrèsclair.Laradiationviolettedoitêtreassociéeàuneradiationdelongueurd'ondeassezprochede300-400nm,borneinférieuredudomainevisibleduspectreélectromagnétique.Surlediagrammecelacorrespondenfaitàdeuxtransitions4sà5p,delongueurd'ondeλ=404,84nmetλ=404,53nm.27) Exprimerl'énergiedecettetransitioneneVdanslecasoùvousaveztrouvé1transition;s'ilyadavantagedetransitions,calculercetteénergieassociéeàlapluspetitelongueurd'onde.Calculonsl'énergieassociéeàλ=404,53nmâˆ†í µ=â„Ž.í µ= !.!!= !,!".!"!!"×!,!.!"!!"!,!".!"!!Jâˆ†í µ= !,!".!"!!"×!,!.!"!!"!,!".!"!!×!,!.!"!!"eV

12A.N:ΔE=3,07eVLemêmesit eindiqu equelalongueurd'ondede laradiationcapabledeprovoqu erl'ionisationdupotassiumvautλion=285,6nm,tandisquelesitewebelementsindiquel'énergiequ'ilfautpoureffectuercetteionisation,expriméeenkJ.mol-1.28) Quelleestdonclavaleurluesurlesitewebelements?Ilfautconvertirl'énergieenkJ.mol-1:í µ!=â„Ž.í µ= !.!!= !,!".!"!!"×!,!.!"!!"#,!.!"!!Jí µ!= !,!".!"!!"×!,!.!"!!"#,!.!"!!×6,02.10!"A.N:EI=419250J.mol-1Soit:EI=419,25kJ.mol-1D - Radioactivité et datation K-Ar (cf. document 1) Lepotassiumestutilisépoureffectuerdesdatations,grâceàundesesisotopes,peutrèspeuabondant,40K.SoitunnucléideM,sedécomposantselonunseulmodededésintégrationnucléaired'ordre1,deconstantedevitesseketdepérioderadioactiveT(outempsdedemi-vie,équivalentdutempsdedemi-réactiont1/2).Danscecas,on nes' intéressepas àlaconcentrationdunucléide,maisàsapopulationPM(t),àladatet.OnnoteraPM(0)lapopulationdecenucléideMàladatet=0etPM(t)celleàladatet.29) Etablirenfonctiondu tempstlaloi d'évolutionPM(t)dela population ennucléideM.EndéduirelarelationentreketT.Nousavonsuneréactiond'ordre1:í µ= í µ.í µ!(í µ) í µí µ í µ= -11í µí µ!(í µ)í µí µ D'oùl'équationdifférentielleàrésoudre-í µí µ!(í µ)í µí µ= í µ!""í µ!(í µ)!

13Etsasolutionaprèsintégration:í µí µí µ!(í µ)í µ!(í µ)!= -í µ.í µLademi-viecorrespondàladisparitiondelamoitiédesnoyauxdoncenappelantTcetemps,quiestenfaitletempsdedemi-réaction,alorsonétablitque:í µí µí µ!(í µ)!2í µ!(í µ)!= -í µ.í µ í µí µ12= -í µ.í µOnretrouvelerésultatconnu:í µí µ2= í µ.í µí µ= !"!!30) Entenantcomptedesdeuxprincipauxmodesdedésintégrationnucléairedupotassium40

19 K

présentésdansledocument1,établirl'équationdifférentielleportantsurlapopulationPK(t).Endéduirelaloid'évolutionPK(t).D'aprèscedocument,alorsnousavons:-í µí µ!(í µ)í µí µ!"!= -í µí µ!(í µ)í µí µ!-í µí µ!(í µ)í µí µ!-í µí µ!(í µ)í µí µ!"!= -í µ!í µ!(í µ)-í µ!í µ!(í µ)-í µí µ!í µí µí µ!"!= -(í µ!+í µ!).í µ!(í µ)Enfait,c'estuneréactiond'ordre1,avecuneconstanteglobalequivaut(k1+k2),celas'intègresansdifficulté:í µí µí µ!(í µ)í µ!(í µ)!= -(í µ!+í µ!).í µOnpeutdoncproposeraussi:í µ!í µ=í µ!0í µ!(!!!!!).! 31) Etablirdemêmelaloi d'évolutionPAr(t).Retrouver larelat ion(1),présentée dansledocument1,entrePK(t)etPAr(t).Nousavons:í µí µ!"(í µ)í µí µ= í µ!.í µ!(í µ)soit,enutilisantlerésultatdelaquestionprécédente:í µí µ!"(í µ)í µí µ= í µ!.í µ!0í µ!(!!!!!).!

14Nousrecherchonsdoncunefonctiondontladérivéecontiente-ax.Oruneprimitivedelafonctione-axeste-ax/a=λ,λétantunréel.Ainsi:í µ!"í µ= - í µ!.í µ!0í µ!(!!!!!).!í µ!+í µ! + í µ λvaêtredéterminéenutilisantlesconditionsinitiales:í µ!"0=0= - !!.!!!!!!!! + í µ í µ= !!.!!!!!!!! D'oùlaloid'évolutiondelapopulationdesatomesd'argonenfonctiondutemps:í µ!"í µ= - í µ!.í µ!0í µ!(!!!!!).!í µ!+í µ! + í µ!.í µ!0í µ!+í µ! í µí µí µí µ= í µí µ.í µí µí µí µí µ+í µí µ í µ - í µ!(í µí µ!í µí µ).í µCelapeuts'écrireainsi:í µ!"í µ= í µ!.í µ!0í µ!+í µ!- í µ!.í µ!í µí µ!+í µ! (í µ!+í µ!)í µ!"í µ=í µ!.í µ!0- í µ!.í µ!í µCequiestbiendelaformeattendue:í µ!+í µ!.í µ!"í µí µ!= í µ!0- í µ!í µCarc'estbien:í µí µí µ= í µí µ+í µí µí µí µ.í µí µí µí µ+í µí µí µ32) Apartirdel'étudedurapport()

K K P0 Pt

,établirlarelation(2)présentéedansledocument1etpermettantdedaterunéchantillonderoche.Estimerl'âgedelacendrevolcaniquedeOkote.Lenombredemassedel'isotopeleplusabondantestA=121.í µ!0= í µ!+í µ!í µ!.í µ!"í µ+í µ!í µí µ!0í µ!í µ= í µ!+í µ!í µ!.í µ!"í µí µ!í µ+1í µ!0í µ!í µ= í µ!+í µ!í µ!.í µ!"í µí µ!í µ+1etcommeí µ!í µ=í µ!0í µ!(!!!!!).!

15í µ!0í µ!í µ= í µ(!!!!!).!D'où:í µ!+í µ!í µ!.í µ!"í µí µ!í µ+1= í µ(!!!!!).!Commeuntermeesttrèspetitdevant1,nousproposonslepassageauloarithmenépérien,puisundéveloppementlimité:Lorsquex<<1,alorsí µí µ1+í µâ‰ˆí µCequidonne:í µí µ(!!!!!!!.!!"!!!!+1)= (í µ!+í µ!).í µetí µí µ(í µ!+í µ!í µ!.í µ!"í µí µ!í µ+1)≈ í µ!+í µ!í µ!.í µ!"í µí µ!í µ D'oùlerésultat:í µ!+í µ!í µ!.í µ!"í µí µ!í µ= (í µ!+í µ!).í µ1í µ!.í µ!"í µí µ!í µ=í µ 1í µ!.í µ!"í µí µ!í µ=í µí µ= 1í µ!.í µ!"í µí µ!í µL'âgedelacendreesttcendre(onutilisek2=Ln2/T2)í µ!"#$%"= 1í µ!.í µ!"í µí µ!í µ=111,9.109 8,3.10128,6.1016í µ!"#$%"= 1í µ!.í µ!"í µí µ!í µ=11,9.109Ln2 8,3.10128,6.1016tcendre=1,67.106annéessoit:tcendre=1,7.106années copie d'écran : réaction du potassium sur l'eau

16 Document 1 - Radioactivité et datation K-Ar Le noyau du potassium 40

19 K

se transforme selon deux modes principaux de désintégration nucléaire ayant lieu simultanément et modélisés par les équations suivantes :1940K→2040Ca+-10e+00υ!e (antineutrino) de constante de vitesse k1 et de temps de demi-vie T1 = 1,40.109 années ;40040 0

19118 0e

KeAr

(neutrino) de constante de vitesse k2 et de temps de demi-vie T2 = 11,9.109 années. On rappelle que : - la période radioactive ou temps de " demi-vie » Ti est la durée au terme de laquelle la population initiale de nucléides a été divisée par deux ; - l'ordre d'une transformation nucléaire vaut 1. Le potassium 40

19 K

est présent dans les laves volcaniques en fusion. Sous l'effet de la chaleur, la roche fond, devient de la lave et libère alors l'argon. En refroidissant, la lave se solidifie à la date t = 0. Elle contient alors du potassium 40

19 K

mais pas d'argon. Le dosage par spectrométrie de masse, à une date t, des quantités d'argon et de potassium 40

19 K

emprisonnées dans le réseau cristallin des laves solidifiées permet alors de dater ce type de roches. On note : - PK(t) et PAr(t), le nombre de nucléides présents dans les roches issues de laves solidifiées, respectivement en potassium 40

19 K et argon à la date t ; - PK(0) est le nombre de nucléides 40 19 K

à la date t = 0 de solidification de la roche. On établit la relation (1) en ne tenant compte que des deux principaux modes de désintégration nucléaire du noyau de potassium 40

19 K 12 KKAr 2 kk P0PP k tt relation (1). En supposant que le rapport () Ar 12 2K P kk kP t t

est suffisamment faible devant 1, on établit la relation (2) permettant de dater un échantillon de roche : ()

Ar 2K P 1 kP t t t

relation (2). L'analyse par spectrométrie de masse des cendres volcaniques provenant de Okote en Ethiopie a donné 8,6.1016 atomes de potassium 40

19 K et 8,3.1012 atomes d'argon 40 18 Ar

par gramme de cendre. Extraits de l'article La méthode de datation potassium-argon (Planète Terre, octobre 2003) http://planet-terre.ens-lyon.fr/article/datation-k-ar.xml

quotesdbs_dbs49.pdfusesText_49
[PDF] atomistique exercice corrigé s1

[PDF] atomistique exercice corrigé s1 pdf

[PDF] atomix physique chimie pdf

[PDF] atouts et contraintes de l'île de la réunion

[PDF] atp et contraction musculaire corrigé

[PDF] atrium

[PDF] ats cnas algerie excel

[PDF] ats cnas excel

[PDF] attawjih 2017

[PDF] attestation assurance pfi

[PDF] attestation d admission ou accord préalable d inscription campus france

[PDF] attestation d hébergement

[PDF] attestation d hébergement prefecture de la vienne

[PDF] attestation d inscription campus france maroc

[PDF] attestation dacompte voiture