[PDF] Closed-Form Optimal Two-View Triangulation Based on Angular





Previous PDF Next PDF



SLAM des CM1 L Acouphènes Bonjour docteur. Jviens vous voir

Slam inspiré de « Acouphènes » de. Grand Corps Malade ; toutes les phrases en italique sont de lui. SLAM des CM1 L. Acouphènes. Bonjour docteur.



Franklin 1 Anderson Funeral Home Blue Franklin 2 Mears Gold

CM1 - Slam. White. Div B3 - CM2 - Bush Auto. WINGS BOYS. Spr1 - Irongate. Div B2 - Franklin - Kingdom. Div A3 - Ox3. Div A1 - Mon1 - Girdwood.



The Deep Convolutional Neural Network Role in the Autonomous

2022?7?10? Anglia Ruskin University Essex CM1 1SQ



The Deep Convolutional Neural Network Role in the Autonomous

2022?7?10? Anglia Ruskin University Essex CM1 1SQ



Closed-Form Optimal Two-View Triangulation Based on Angular

simultaneous localization and mapping (SLAM) [22] and structure-from-motion (SfM) pipelines [29] ( Cm0 + Cm1) × t nb = ( Cm0 ? Cm1) × t



CU - 230V - 2M INSTALLATION AND USERS MANUAL - Control unit

L6 SLAM LOCK. ON. OFF. L7 COURTESY LIGHT COMMON with CM1 ... CM1. CL1. OP2. CM2. CL2. Configuration - MOTOR n.1 ON THE LEFT MOTOR n.2 ON THE RIGHT.



Autonomous Vehicle State Estimation and Mapping Using Takagi

2022?4?28? To generalize the SLAM algorithm i.e.



DOCUMENT CADRE POUR LA MISE EN ŒUVRE DUN CYCLE

2 Source «Stage a poetry Slam» Marc Smith 2009. Direction Générale de l'Enseignement Scolaire. Page 4. Les grands objectifs suivants 



Haut les Arts Au jour le jour … Spectacle vivant -Arts visuels

2018?6?7? EEB Théâtre et Slam Rencontre imprévue



The Deep Convolutional Neural Network Role in the Autonomous

2022?7?10? Anglia Ruskin University Essex CM1 1SQ



Searches related to slam cm1 PDF

Department of Computer Science Columbia University

Quels sont les avantages du slam ?

Le slam permet à chacun d’apprendre à écrire un texte libre et personnel ; d’apprendre à développer l’imaginaire, l’humour, la créativité par la recherche de rimes ; d’apprendre la confiance en soi à l’oral comme à l’écrit et l’entraide ; et d’apprendre à prendre la parole de façon rythmée pour dire un texte dont on est fier d’être l’auteur.

Comment aider les enfants à écrire le premier Slam ?

La situation de présentation aide les enfants à écrire le premier slam. Chacun se remémore sa phrase de présentation. La consigne est : «Ecrire 4 vers en rime en respectant le même nombre de pieds pour chaque vers». C’est alors que tout le groupe se met à compter en tapotant de ses doigts sur la table pour trouver le nombre de pieds suffisant !

Qu'est-ce que le slam ?

Il s'agit d'un lieu où les slameurs vont pouvoir faire leur marché de mots, apprendre des manière de dire, copier, chiper, emprunter. "le slam, c'est plein de sens". Faire identifier la métaphore d'un festin de mots : "Au menu : micro, verbe, écrivain public". 2. Explicitation du procédé d'allitération

Comment interpréter un texte en slam ?

Découverte et analyse d'un texte de slam. Ce slam est une invitation à participer au spectacle. Faire repérer le mode du poème / l'impératif ("venez, entrez, ne te pose pas") Faire expliciter le titre de l'extrait - le souk de la parole - et faire repérer les substantifs désignant le lieu (échoppe, magasin, château, souk,)

Closed-Form Optimal Two-View Triangulation Based on Angular Closed-FormOptimalTwo-V iewTriangulation BasedonAngularErrors

SeongHunLee JavierCi vera

I3A,Univ ersityofZaragoza,Spain

{seonghunlee,jcivera}@unizar.es

Abstract

Inthispaper ,westudy closed-formoptimalsolutionsto two-viewtriangulationwithknowninternal calibrationand pose.Byformulatingthetriangulation problemas L1and L ∞minimizationofangular reprojection errors, wederive theexact closed-formsolutionsthatguaranteeglobal opti- malityunde rrespectivecostfunctions.Tothe bestofour knowledge,wearethefirst topresent suchsolutions.Since fisheyeoromnidirectional.Our methodsalsorequiresignif- icantlylesscomputation thanthee xistingoptimalmethods. Experimentalresults onsyntheticandrealdatasets validate ourtheoretical derivations.

1.Introduction

Recoveringthepositionofa3Dpoint given itsprojec-

tionsintw oormore camerasiscalledtriangulation.Itcon- stitutesafundamental buildingblock instereovision [ 33],
simultaneouslocalizationand mapping(SLAM)[

22]and

structure-from-motion(SfM)pipelines[

29].For largeprob-

lems,reconstructingthousands (ormillions)of pointsisnot uncommon,soachie vingfast andaccuratetriangulationis importantforthe performanceofsuch systems.

Ifoneassumes theexact knowledgeof cameramatrices

andnoiselessfeature measurements,triangulationamounts tointersectingtw obackprojectedrays thatcorrespondto thesame3D point.Inpractice, howev er,this assumptionis unrealistic,andthe raysdonot necessarilyintersect.There- fore,anontri vialmethodis requiredevenforjust twovie ws.

Thestandardapproach istofind the3Dpoint thatmin-

imizesachosen costfunctiongi venthe featuremeasure- ments.Themost commonarethe L1norm(sumof magni- tude),L2norm(sumof squares)andL∞norm(maximum) ofimagereprojection errors.Whilereasonable forperspec- tivecameras,theimagereprojectionerrordoes notgener- alizewellto differentcamera types(e.g.,omnidirectional orfullyspherical panoramiccameras).This motivates the

useofangularreprojectionerror, arotationallyinvariantal- ternativetotheimagereprojectionerrorthat isgenericand

independentofthe projectiongeometry[

21,24,27].

Inthisw ork,wederi ve,forthefirsttime toourkno wl- edge,thee xactclosed-formsolutions totheL1andL∞op- timaltriangulationfrom twovie wsbasedon theangularre- projectionerror. Unlikeiterativemethods (e.g.,[

13,17]),

theproposedmethods guaranteeglobaloptimality with- outany iterations,andunlikepolynomialmethods (e.g.,

10,23,32]),they donotinvolve findingtheroots ofa

ouslyprovide theglobaloptimality,speedand simplicity.

Wealsopresentouro wnderiv ationofthe L2optimalso-

lutionthatis muchmorecompact andgeometricallyintu- itivethantheexistingone[

24].Sinceall threemethodsare

basedonthe angularerror, theyare notlimitedto standard perspectivecamerasandcanalsobeused forfisheye, omni- directionalandfully sphericalpanoramiccameras. Thepaperis organized asfollows. Inthenextthreesec- tions,wediscuss therelatedw orkandpreliminaries. Sec- tion tionstothe L1,L2andL∞optimaltriangulation.T omake ourpapercompact andeasilyaccessible, weseparatedthe proofsfromour mainfindingsand putthemin theappendix.

Section

8addressesthecheirality constraint.Finally, exper-

imentalresultsare providedin Section

9,followed bythe

conclusionsinSection 10.

2.RelatedW ork

Themostwidespread approachtotriangulation istofind the3Dpoint thatminimizesthe L2normofimage reprojec- tionerrors[

8].Assumingthat imagepointsare perturbedby

Gaussiannoise,the L2optimalsolutiongi vesthe maximum likelihoodestimate(MLE).Thiscan beobtainedin closed formbysolving apolynomialof degree6 fortwo views

10]andde gree47for threeviews[32].Suchpolynomial

methodsare,ho wever ,computationallyexpensiveandsus- ceptibletoill-conditioning [

17].Besides,an iterative search

fortheroots mayconv ergeto alocalminimum [ 10].

Anothertwo-vie wmethodbyKanatanietal.[

13]iter-

ativelycorrectsthe2Dprojectionsofthe points.Although thismethod wasshowntobe fasterthantheoneby Hartley 2681
andSturm[ 10],itdoes notsatisfythe epipolarconstraint

19]ineach iteration.Lindstrom[ 17]solved thisproblem

withanimpro vediterati vealgorithmthatisevenmore sta- bleandf aster.Ho wever,neitherhismethodnorKanatani" s guaranteesglobaloptimality .Oliensis[

24]showed thatby

formulatingtheproblem asL2minimizationofthe sineof angularreprojectionerrors, anexact closed-formsolution canbederi vedfor two-viewtriangulation.

Insteadofminimizing theL2norm,onemay chooseto

minimizetheL1normofreprojection errors.Theadv an- tageofL1normisthat itismore robustto outliersasit placeslessemphasisonlargeerrors[

10,11].For twoviews,

HartleyandSturm[

10]showed thattheL1optimalsolution

canbeobtained inclosedform bysolvinga polynomialof degree8.Theyalso foundthatt heL1optimizationgiv es slightlymoreaccurate 3Dresultsthan theL2optimization. Ingeometric problems,anotherpopularnormisthe L∞ norm.TheL∞optimalsolutioncorresponds totheMLE undertheassumption ofuniformnoise intheimage points

6].Theadv antageofthe L∞costfunctiono verthe L2

costisthat itisrelati velysimpler andhasa singleminimum

9].For thecaseoftwovie ws,N´ıster[23]showed thatthe

optimalsolutioncan beobtainedin closedformby keeping therepro jectionerrorsequalinthetwoviewsandsolving theresultingquartic equation.Amain drawbackof theL∞ costisthat itisrelati velymore sensitive tooutliers[

9].This

beingsaid,such sensitivityw asshown tobeusefulforout- lierremov al[

30,26,16].

Whilemostof theaforementionedw orksformulatetheir

optimizationproblemin termsofthe imagereprojectioner - ror,theangularreprojectionerror isanotherpopular choice. Itembodiesa betternoise modelforfishe yeoromnidirec- tionalcameras[

24,20].Even forperspectivecameras,the

assumptionofGa ussiannoiseis notjustified[

6],andthe

angularreprojectionerror isjustas validas theimagere- projectionerror, ifnotmoreso.Inthe literature,ithas been proposedtominimize thesineof angularreprojectionerrors inL2norm[

24],thetangent inL2orL∞norm[7,9,12],

andthecosine inneg ative L1norm[

28,3].Incontrast to

thesemethods,our L1andL∞optimizationdonot involv e trigonometricfunctions.

3.Preliminaries on3DGeometry

Throughoutthepaper ,weadopt thefollowingnotation:

Weuseboldlettersfor vectorsandmatrices,andlightletters forscalars.The Euclideannormof avector visdenotedby ?v?,andthe unitvector by?v=v/?v?.Theangle between twolinesL0andL1isdenotedby ?(L0,L1)?[0,π/2]. Thefollowing vectoridentitieswillcomein handylater: ?a×?b?2=1-(?a·?b)2(2) Wealsomakefrequent useofthe followingformulas:1.Thedistance betweenapoint pandaplane Π0(x)= n

0·(x-c0)=0 isgiv enby?p-r0?wherer0isthe

projectionofpontoΠ0.Thisis computedasfollo ws: ?p-r0?=|?n0·(p-c0)|.(3)

2.Thedistance betweentwo skew linesL0(s0)=c0+

s

0m0andL1(s1)=c1+s1m1isgiv enby?r0-r1?

wherer0andr1arethepoints oneachline thatformthe closestpair. Lettingt=c0-c1andq=m0×m1,this iscomputedas follows: ?r0-r1?=|t·?q|.(4)

Thetwo pointscanalsobeobtainedindi vidually[

14]: r

0=c0+q·(m1×t)

?q?2m0,(5) r

1=c1+q·(m0×t)

?q?2m1.(6)

Equation(

4)canbe interpretedasthe minimumamount

oftranslationrequired forthetw olinesto intersect.In thiswork, itwillbealsoimportan ttokno wtheminimum amountofrotation (orpiv ot)requiredfor thetwo linesto intersect.We answerthisquestioninthefollo winglemma:

Lemma1(Minimum Pivot Anglefor Intersection)

Giventwosk ewlines L0(s0)=c0+s0m0andL1(s1)=

c

1+s1m1,letL?0betheline thatformsthe smallestangle

0?[0,π/ 2]toL0amongallpossible linesthatinter sect

bothpointc0andlineL1.Then,L?0isthepr ojectionof L

0ontotheplane thatcontainsc0andL1.Furthermore ,

lettingt=c0-c1andn1=m1×t, sin(θ0)=|?n1·?m0|.(7) Wecallθ0theminimumpiv otanglef orintersection,asit representsthesmallestanglerequired forpivotingline L0 atc0tomake itintersectL1.

Proof.RefertoAppendix

A.?

4.Preliminaries onTwo-ViewT riangulation

Considertwo camerasC0andC1observingthesame

3Dworld pointxw.Letc0andc1betheirpositions

inthew orldframe,and letRandtbetherotation ma- trixandtranslation vectorthat togethertransforma point fromthecamera frameC0toC1,i.e.,x1=Rx0+t, spondtoxwincameraframe C0andC1,respectiv ely. Sincetriangulationis impossibleforzero translation,we set?t?=?c0-c1?=1withoutlossof generality.Let u

0=(u0,v0,1)?andu1=(u1,v1,1)?bethehomoge-

neouspixel coordinatesoftheestimatedcorrespondenceto x wineachframe. Given thecameracalibration matrixK, thenormalizedimage coordinatesf0=[x0/z0,y0/z0,1]? andf1=[x1/z1,y1/z1,1]?arerelatedto u0andu1by u

0=Kf0andu1=Kf1.

2682
CC01 0 d0 1 d1

Rf0f1''

Rf0f1 t x'1 Figure1.The differencebetween theobserved features(f0,f1)and thetriangulationresult (f?0,f?1)canbe quantifiedbyei therimage reprojectionerrors( d0,d1)orangular reprojectionerrors( θ0,θ1).

Thetwo backprojectedraysinframeC1,i.e.,r1(s1)=

s

1f1andr0(s0)=s0Rf0+t,donot necessarilyintersect

duetoinaccuracies intheimage measurementsandcamera matrices.For theraystointersect,f0andf1mustbecor - rectedtof?0andf?1suchthatthe epipolarconstraint[ 19]is satisfied.Itenforces thecoplanarityof f?1,Rf?0andt,and isgiv enby f ?1·(t×Rf?0)=0 .(8) Thegoalof theoptimaltriangulation istominimallycor- rectthefeature rayssothat theysatisfy (

8)andintersect at

somepointx?1inframeC1.Whatis meantby“minimal"de- pendsonthe chosencostfunction anderrorcriterion. Fig. 1 illustratestwo mostpopularerrorcriteria,namely theimage reprojectionerrorand theangularreprojection error.F or- mally,theyaredefined asfollows: di:=?ui-u?i?=?K(fi-f?i)?,fori=0,1(9) i:=?(fi,f?i)=??K-1ui,K-1u?i?fori=0,1(10)

Inthisw ork,weminimize thelatterinL1,L2andL∞

norms.Oncewe have theoptimalf?0andf?1,thepoint of intersectionx?1canbeobtained usingeither(

5)or( 6):

x

1=t+z·(t×f?1)

?z?2???? 0Rf

0=z·(t×Rf?0)?z?2????

1f ?1(11) withz=f?1×Rf?0, whereλiequalsthedepth multipliedby?f?i?fori=0,1.

Notethatthe epipolarconstraint(

8)isa necessarycon-

ditionforintersecting thetwo rays,but notasuf ficientone. Fig.

2illustratesscenarioswhere thetwo raysarecoplanar ,

butdonotintersect.This happenswhenthe intersectionre- quiresneg ativedepth(s),violatingthecheiralityconstraint

8].Inthe followinganalysis (untilSection8),wewil ltem-

porarilyassumethat satisfyingtheepipolar constraint( 8)is sufficientforintersectingtherays.

5.Closed-Form L1Triangulation

TheL1triangulationbasedon theangularreprojection

error(

10)findsthe featureraysf?0andf?1thatminimize

0+θ1subjecttothe epipolarconstraint(

8).Thefollo wing

lemmarev ealsasurprisingfactthat(θ0+θ1)minisachiev ed bycorrectingeither oneoff0orf1,but notboth: (a) (b)t t CC f0f1R x' t (c)f

0Rf0Rf1

f 1 0 1C 0C1 C 1C 0' '1 x' 1x' 1 Figure2.Example scenariossatisfyingthe epipolarconstraint( 8). Theepipolarplane (shownin green)containsboth theraysandthe cameracenters.Cheirality conditionisviolated incase(b) and(c).

Lemma2( L1AngleMinimization)

Giventwosk ewlines L0(s0)=c0+s0m0andL1(s1)=

c

1+s1m1,considerany twointersecting linesthatalso

passc0andc1,respectively ,i.e.,L?0(s?0)=c0+s?0m?0and L

1(s?1)=c1+s?1m?1.Lett=c0-c1,n0=m0×t,

n (θ0+θ1)isminimizedfor thefollowingm?0andm?1: m

0=m0-(m0·?n1)?n1andm?1=m1.(12)

Otherwise,

m

0=m0andm?1=m1-(m1·?n0)?n0(13)

Proof.RefertoAppendix

B.?

Bysubstituting Rf0andf1intom0andm1intheabo ve

lemma,theresulting m?0andm?1becomethecorrected rays Rf

0andf?1thatsatisfythe L1optimality,andn0(orn1)

becomesthenormal ofthecorresponding epipolarplane.

6.Closed-Form L2Triangulation

Consideringthatthe angularerrorsare smallinpractice, the“relaxed" L2triangulationfindsthe featureraysf?0and f jecttothe epipolarconstraint(

8).Notethat thesmall-angle

approximationbysin(θ)ismoreaccurate thanbytan(θ)or

1-cos(θ)thathav ebeenusedinliterature[

7,9,12,28,3].

Thisiseasily seenbycomparing theirMaclaurine xpan- sions.Aswill beshown inthefollo winglemma(and previ- ouslyin[

24]),therelaxation withthesine functionallows

ustoderi vethe L2optimalsolutionin closedform.

Lemma3( L2AngleMinimization)

Giventwosk ewlines L0(s0)=c0+s0m0andL1(s1)=

c

1+s1m1,considerany twointersecting linesthatalso

passc0andc1,respectively ,i.e.,L?0(s?0)=c0+s?0m?0and L

1=?(L1,L?1).Then,?sin2θ0+si n2θ1?isminimizedfor

m i=mi-(mi·?n?)?n?fori=0,1,(14) where ?n?isthesecond columnofthe 3×3matrixVfrom 2683

USV?=SVD???m0?m1?

I-?t?t???

.(15)

Proof.RefertoAppendix

C.?

Analogouslytothe L1method,substitutingRf0andf1

intom0andm1intheabo velemma givesRf?0=m?0and f ?1=m?1thatsatisfythe L2optimality.

7.Closed-Form L∞Triangulation

TheL∞triangulationbasedon theangularreprojection error(

10)findsthe featureraysf?0andf?1thatminimize

max(θ0,θ1)subjecttothe epipolarconstraint(

8).Thefol-

lowinglemmastatesthatthis isachiev edwhenθ0=θ1:

Lemma4( L∞AngleMinimization)

Giventwosk ewlines L0(s0)=c0+s0m0andL1(s1)=

c

1+s1m1,considerany twointersecting linesthatalso

passc0andc1,respectively ,i.e.,L?0(s?0)=c0+s?0m?0andL?1(s?1)=c1+s?1m?1.Lett=c0-c1,na=

0=θ1.Thisis achieved for

m i=mi-(mi·?n?)?n?fori=0,1,(16) where n?=? n aif?na?≥? nb? n bohterwise(17)

Proof.RefertoAppendix

D.?

Analogouslytothe previoustw omethods,substituting

Rf

0andf1intom0andm1givesRf?0=m?0andf?1=m?1thatsatisfythe L∞optimality.

8.Cheirality, ParallaxandOutliers

Wehaveused thetermlinesinsteadofraysinalllemmas

sofar ,ignoringthecheiralityconstraint[

8].We arguethat

iftheoptimal solutionviolatesthe cheiralityconstraint,the mostreasonablechoice istosimply discardtheresult. In thefollowing, weprovidetherationalefor thischoice. Fig.

4illustratesfiv escenarioswheretheoptimalsolu-

tionviolates thecheiralityconstraint.Incase (a),bothrays havenegativedepths attheoptimalintersection.Increasing theallowed angularreprojectionerror ,thefirst intersection withpositiv edepthsoccurswhenthetwocorrectedrays be- comeparallel,resulting inapoint atinfinity. Thispoint cannotbetriangulated, soitshould bediscarded. Intheremaining cases,theoptimal intersectioninv olves onlyoneof theraysha vingane gativ edepth.F ollowingthe sameprocedure,the firstintersectionwith positive depths occurseitherat infinity(case(b)), atoneof thecameracen- ters(case(c)), alongtheray paralleltothe translation(case (d)),orat apointsome whereelse(case (e)). Incase(b), (c)and(d), thenewly triangulatedpointhas eitherinfinite,zero orambiguousdepth, soitis reasonable todiscardit. Incase(e), wefoundthat reattemptingthe triangulationwithpositi vedepths yieldseitheraverylarge

Input:Calib.matrix(K),relativ epose(R,t),anda

match(u0,u1)fromtw oviews (C0,C1).

Output:Triangulated3Dpoint(x?1)inref. frameC1.

2)ForL1triangulation:

m

0andm?1.Otherwise,use (

13).

ForL2triangulation:

Computem?0andm?1from(14)and( 15).

ForL∞triangulation:

Computem?0andm?1from(16)and( 17).

3)Rf?0←m?0andf?1←m?1.

4)Checkcheirality:

(i)Obtainλ0andλ1from(11). (ii)Discardthe pointandterminate ifeither

5)Checkangular reprojectionerrors:

(ii)Discardthe pointandterminate if max(θ0,θ1)>?1forsomesmall ?1.

6)Checkparallax:

(i)β←?(Rf?0,f?1) (ii)Discardthe pointandterminate if

2forsomesmall ?2.

7)Computeand returnx?1from(11).

Table1.Summaryofthe proposedmethods.

error,apointneart heepipoleor alow parallaxangle.T yp- ically,thesearetheindicators oflow accuracyor anoutlier

10,8],soa reasonablechoiceis todiscardthe match.This

procedureisoutlined inStep4-6 ofTab . 1.

9.ExperimentalResults

Weevaluatethe proposedmethodsincomparisontothe

midpointmethod[

2,10],Hartley andSturm"sL1andL2

method[

10],Lindstrom"s L2methodwithfi veiterations

17],andN ´ıster"sL∞method[23].Thee valuationw as

performedonboth syntheticandreal datasets.We gener- atedthesynthetic datasetsasfollo ws:Aset of8×4point cloudsof2,500 pointseachare generatedwitha Gaus- sianradialdistrib utionN(0,(d/4)2)wheredisthedis- tancefromthe worldorigin. Eachpointcloud iscenteredat [0,0,d]?ford=2nwithn=-1,0,...,+6,andtheir im- ageprojectionsare perturbedbyGaussian noiseN(0,σ2) forσ=0.5,1,2,4,8.Thesize andthefocal lengthof theimagesare 1,024×1,024pixelsand512pixel,re- spectively.Wehavethreeconfigurationsfor thecameraquotesdbs_dbs29.pdfusesText_35
[PDF] comment apprendre vite par coeur

[PDF] technique pour apprendre vite ses leçons

[PDF] technique de mémorisation de cours

[PDF] techniques de mémorisation efficaces

[PDF] objectif poésie cycle 3

[PDF] la poésie ? l'école

[PDF] savoir argumenter pdf

[PDF] savoir argumenter du dialogue au débat

[PDF] savoir argumenter du dialogue au débat pdf

[PDF] comment réussir un débat

[PDF] cour communication pdf

[PDF] bien communiquer au travail

[PDF] comment bien communiquer avec les autres

[PDF] comment trouver de bons arguments ? sa candidature

[PDF] comment gérer son argent pour devenir riche pdf