[PDF] PHYSIOLOGIE RESPIRATOIRE grande que le volume courant





Previous PDF Next PDF



Physiologie respiratoire.pdf

volume courant c'est la ventilation alvéolaire qui va beaucoup augmenter Au repos on ventile peu mais à l'exercice on ventile d'avantage. On dit.



Tables donnant les valeurs dun volume courant (VT) de 6 ml/kg en

Tables donnant les valeurs d'un volume courant (VT) de 6 ml/kg en fonction du poids idéal théorique. J.-C.M. Richard. Service de réanimation médicale 



PHYSIOLOGIE RESPIRATOIRE

grande que le volume courant est grand et donc la fréquence respiratoire petite. 1.3 La ventilation alvéolaire et la pression partielle des gaz alvéolaires.



Physiologie de la respiration.

Le diaphragme entraîne une modification de volume et une ventilation dans la partie inférieure du thorax. Quand on veut ventiler avec la partie supérieure 



Prise en charge du Syndrome de Détresse Respiratoire Aigüe

23 janv. 2019 plateau et qu'une proportion non négligeable de patients bien que ventilés avec un volume courant inférieur à 8.



IFSI DIJON

Vérification du ballonnet ++ (volume d'air de remplissage indiqué sur la sonde. + Stéthoscope. + Matériel d'aspiration fonctionnel 



Barotraumatisme lors de la ventilation mécanique Barotrauma

Cette pression augmente si le volume courant augmente ou si la compliance du poumon diminue. Elle est directement liée à la distension distale. Une manœuvre sur 



Les modes ventilatoires en anesthésie

Patient reçoit un volume courant réglé constant avec un mode en débit décélérant à une fréquence imposée. • Vt: 7-9 ml/kg.



Principes généraux de réglage des modes contrôlés et assistés

ventilateur) et le système respiratoire du patient ventilé (par exemple volume courant dans un mode barométrique ou pression de crête et pression de plateau 



SPLF

Pour ce mode il sera absolument nécessaire au minimum d'ajuster le volume courant et le temps inspiratoire. b. Mode en pression. Dans ce mode



Mechanical Ventilation: Pediatric Volume Mode (Respiratory

• Mechanical ventilators can be used in a volume or pressure mode as well as hybrid variations that combine aspects of both modes Lung protective strategies for a child on PPV include low tidal volume (VT) (6 ml/kg or range of 5 to 7 ml/kg)4 controlled plateau pressure of 30 mm Hg or less and early and aggressive



Searches related to volume ventilé PDF

1- La ventilation globale VE : c’est la quantité d’air qui par minute pénètre au niveau du poumon VE = VT x Fr VT : Volume courant = 500 ml Fr : La fréquence respiratoire par minute (12 cycles / min) 2- La ventilation alvéolaire: VA : représente le volume d’air qui arrive effectivement au niveau des alvéoles

What are the different modes of ventilation?

Common modes of ventilation include assist control, synchronized intermittent mechanical ventilation (SIMV), and pressure support. The potential complications with mechanical ventilation include decreased cardiac output and increased intracranial pressure.

How to approach to the obese patient requiring mechanical ventilation?

To approach to the obese patient requiring mechanical ventilation, we propose a schematic algorithm (i-STAR, Fig. 1) as follows: (1) induction and intubation, (2) setting up initial mechanical ventilation, (3) titrating mechanical ventilation parameters, (4) assessing harmfulness of mechanical ventilation, and (5) rescue strategies.

What are the complications of mechanical ventilation?

The potential complications with mechanical ventilation include decreased cardiac output and increased intracranial pressure. Mechanical ventilators can be used in a volume or pressure mode as well as hybrid variations that combine aspects of both modes.

How to set the ventilator rate?

Set the ventilator rate. An initial rate setting should be based on age and the size of the neonate, infant, or child. The rate may be adjusted on the basis of PaCO2 with the assumption that the VT is held constant. Initially, VT can be estimated. For complete control, the calculated rate is used.

PHYSIOLOGIE RESPIRATOIRE Faculté de Médecine Saint-Antoine Physiologie Respiratoire PCEM 2 PCEM2

PHYSIOLOGIE RESPIRATOIRE

Professeur Laurent BAUD

LES ECHANGES GAZEUX ALVEOLO-CAPILLAIRES

Mise à jour: Janvier 2003

Université Pierre et Marie Curie 1/10

Faculté de Médecine Saint-Antoine Physiologie Respiratoire PCEM 2 PLAN

Table des matières

1 LES ECHANGES GAZEUX ALVEOLO-CAPILLAIRES.....................................................................3

1.1 L'AIR ALVEOLAIRE ET L'ESPACE MORT.........................................................................

.........................3

1.2 LA VENTILATION ALVEOLAIRE. LA VENTILATION ALVEOLAIRE (V°

A ) EST LE PRODUIT DU VOLUME

ALVEOLAIRE PAR LA FREQUENCE RESPIRATOIRE (F):........................................................................

...................4

1.3 LA VENTILATION ALVEOLAIRE ET LA PRESSION PARTIELLE DES GAZ ALVEOLAIRES..............................4

1.3.1 Le CO

2

1.3.2 L'O

2

1.4 LE QUOTIENT RESPIRATOIRE.........................................................................

1.4.1 L'équation des gaz alvéolaires.........................................................................

...............................6

1.5 LA DIFFUSION ALVEOLO-CAPILLAIRE.........................................................................

...........................6

1.5.1 Lois de la diffusion.........................................................................

1.5.2 Limites de la diffusion.........................................................................

1.5.3 Mesure de la capacité de diffusion.........................................................................

.........................8

1.5.4 Vitesses de réaction avec l'hémoglobine.........................................................................

................8

1.5.5 Diffusion du CO

2

1.5.6 Rapports ventilation / perfusion.........................................................................

.............................9

3.4.7. Le gradient Alvéolo-artériel pour l'oxygène........................................................................

..............10

Université Pierre et Marie Curie 2/10

Faculté de Médecine Saint-Antoine Physiologie Respiratoire PCEM 2

1 LES ECHANGES GAZEUX ALVEOLO-CAPILLAIRES

1.1 L'air alvéolaire et l'espace mort.

Le volume d'air déplacé par chaque mouvement ventilatoire, ou volume courant (VT), est

d'environ 500 ml. Une partie de ce volume n'atteint pas les alvéoles où les échanges gazeux se

produisent et constitue donc un volume ou "espace mort" (VD). L'espace mort a 2 définitions: - anatomique: c'est le volume des voies aériennes, qui représente environ 150 ml - physiologique: c'est le volume des voies aériennes auquel s'ajoute le volume des alvéoles dans lesquelles les échanges gazeux avec les capillaires se font mal. Il est normalement peu différent de l'espace mort anatomique. Pour l'évaluer, on part de l'évidence que le CO 2 expiré vient uniquement du volume d'air alvéolaire (V A ) et pas de l'espace mort. On peut donc écrire: V T . F E CO 2 = V A . F A CO 2 où F E CO 2 représente la fraction de CO 2 dans l'air expiré, V A le volume alvéolaire, et F A CO 2 la fraction de CO 2 dans l'air alvéolaire. Comme le volume courant inclut le volume alvéolaire et le volume de l'espace mort V T = V A + V D donc V A = V T - V D l'équation devient: V T . F E CO 2 = (V T - V D ) . F A CO 2 et V D = (F A CO 2 - F E CO 2 V T F A CO 2 Comme la pression partielle d'un gaz est proportionnelle à sa concentration ou fraction, on peut écrire (équation de Bohr): V D = (P A CO 2 - P E CO 2 V T P A CO 2

Enfin, comme la pression partielle de CO

2 est identique dans l'air alvéolaire (P A CO 2 ) et dans le sang artériel (P a CO 2 ), on peut écrire: V D = (P a CO 2 - P E CO 2 V T P a CO 2 La valeur de ce rapport entre l'espace mort et le volume courant est normalement comprise entre 0,20 et 0,35, ce qui signifie que l'espace mort représente environ 30% du volume courant.

Université Pierre et Marie Curie 3/10

Faculté de Médecine Saint-Antoine Physiologie Respiratoire PCEM 2

1.2 La ventilation alvéolaire. La ventilation alvéolaire (V°

A ) est le produit du volume alvéolaire par la fréquence respiratoire (f): V° A = (V T -V D ) . f Pour un même niveau de ventilation, la ventilation alvéolaire varie donc selon que c'est la

fréquence respiratoire ou le volume courant qui est privilégié. C'est ce que décrivent les 3

situations suivantes:

V° (L/min) 10 10 10

V T (mL) 1000 500 250 f (/min) 10 20 40 V D (mL) 200 200 200 V A (mL) 800 300 50 V° A (L/min) 8 6 2 On voit que pour un même niveau de ventilation, la ventilation alvéolaire est d'autant plus grande que le volume courant est grand et donc la fréquence respiratoire petite.

1.3 La ventilation alvéolaire et la pression partielle des gaz

alvéolaires.

1.3.1 Le CO

2

Nous avons vu que le CO

2 expiré vient uniquement de l'air alvéolaire (V A ) et pas de l'espace mort, de sorte que: V T . F E CO 2 = V A . F A CO 2 et, après multiplication de chaque volume par la fréquence respiratoire

V° . F

E CO 2 = V° A . F A CO 2

Comme V° . F

E CO 2 représente le débit expiratoire de CO 2 , on peut écrire: F A CO 2 = V°CO 2 ou V° A P A CO 2 = V°CO 2 . K V° A où K représente une constante.

Université Pierre et Marie Curie 4/10

Faculté de Médecine Saint-Antoine Physiologie Respiratoire PCEM 2 On voit que si le métabolisme tissulaire augmente (au cours de l'exercice musculaire par exemple), la ventilation alvéolaire doit augmenter dans les mêmes proportions pour que la P a CO 2 ne varie pas.

1.3.2 L'O

2 La différence entre le volume d'oxygène qui entre dans le poumon chaque minute (FIO2 . V°A) et le volume qui en sort (FAO2 . V°A) correspond au volume d'oxygène qui a été consommé dans les tissus (V°O2). On peut donc écrire:

V°O2 = (F

I O 2 . V° A ) - (F A O 2 . V° A

Et donc

F A

O2 = F

I

O2 - V°O

2 V° A Soit P A

O2 = P

I

O2 - (V°O

2 . K) V° A On voit que si le métabolisme tissulaire augmente (au cours de l'exercice musculaire par exemple), la ventilation alvéolaire doit augmenter dans les mêmes proportions pour que la P A O 2 ne varie pas. Si la ventilation alvéolaire est limitée, seule l'augmentation de P I O 2 permet de maintenir P A O 2

Université Pierre et Marie Curie 5/10

Faculté de Médecine Saint-Antoine Physiologie Respiratoire PCEM 2

1.4 Le quotient respiratoire.

C'est le rapport entre la production de CO

2 et la consommation d' O 2 . Il est déterminé par le métabolisme des tissus, et généralement compris entre 0,7 et 1,0:

QR = V°CO

2

V°O

2

1.4.1 L'équation des gaz alvéolaires.

A partir de cette dernière équation, il peut être établi que

V°O

2 = V°CO 2 QR

De sorte que

P A

O2 = P

I

O2 - (V°CO

2 . K)

QR . V°

A

Et puisque V°CO

2 . K = P A CO 2quotesdbs_dbs29.pdfusesText_35
[PDF] comment calculer le volume courant a partir d'un graphique

[PDF] aire cylindre formule

[PDF] statistique calculatrice ti 82

[PDF] théorème des moments

[PDF] nombre d'oxydation exercices corrigés pdf

[PDF] nombre d'oxydation kmno4

[PDF] nombre d'oxydation exercice corrigé

[PDF] nombre d'oxydation explication

[PDF] nombre d'oxydation mno4-

[PDF] formule pour calculer le nombre d'atome

[PDF] comment calculer le nombre d'électrons

[PDF] combien d'électrons possède l'atome d'argent

[PDF] calcul pvht batiment

[PDF] calcul prix de vente ht

[PDF] pv ht a partir du taux de marque