[PDF] Phy 12a/12b Oscillateur harmonique : corrections 2013-2014





Previous PDF Next PDF



Lisolation acoustique Rappels & exercices

Rappels & exercices. Suzel Balez. CRESSON Rappel des principes de base de l'isolation acoustique ... les bruits aériens : transmission sonore dans l'air.



Corrigé TD Biologie Nutrition-alimentation Technologies et

Exercices en chanson : muscles des jambes bras



correction exercices Précis de Physique-Chimie chapitre1 à 4

Eléments de correction des exercices du chapitre 2 : rappels et notions de base en 14 : éléments d'acoustique ; application à l'isolation phonique des.



Mécanique des fluides et transferts

Exercice 1. en utilisant le Système International donner l'équation aux que les forces visqueuses agissent comme une force de rappel et stabilisent.



thermique.pdf

55 exercices et problèmes tous présentés avec des corrigés détaillés. (l'air est un isolant) appelée résistance thermique de contact.



Ondes Electromagnétiques

2.3.1 Rappel : relations constitutives en régime statique . La constante diélectrique statique d'un isolant peut se déduire de la mesure de capacité d' ...



Exercices de dynamique et vibration mécanique

14 nov. 2021 En déduire l'évolution de la déformée. Comment s'expriment les amplitudes des modes propres ? De quoi est fonction le spectre sonore de cette ...



XPR/0803 Cover F9

NOTION D'ISOLATION ACOUSTIQUE. Pour rappel une onde sonore arrivant sur un obstacle tel une paroi



Chimie (problèmes et exercices) Indice 540.76 Nombres de Titres

Chimie organique Stéréochimie : rappels de cours exercices corrigés. Gruia



Phy 12a/12b Oscillateur harmonique : corrections 2013-2014

Exercices prioritaires : la force de rappel exercée par le ressort 1 sur A : F1?A = ?k1x1i ... De même en isolant le ressort 2

Phy 12a/12b Oscillateur harmonique : corrections 2013-2014

OSCILLATEUR HARMONIQUE : CORRECTIONS

Exercices prioritaires :Deux ressorts accrochés

?Exercice n° 1Deux ressorts sans masse de longueursl1etl2au repos et de raideursk1etk2sont accrochés

bout à bout et tendus horizontalement entre deux murs distants deDÈl1Ål2 . Le dispositif est immobile. Remarque: L"énoncé définissant les constantes de raideur des ressorts, il est implicitement

supposé que l"on peut utiliser l"approximation linéaire pour modéliser l"élasticité des res-

sorts.1.C alculerl "allongementde ch acundes r essorts.

On notex1etx2les allongements respectifs

des ressorts 1 et 2, à l"équilibre, comme re- présenté sur le schéma ci-contre.

Ces deux inconnues sont reliées par la re-

lationDAEl1Åx1Ål2Å x2, donc il suffit de trouver une équation sans inconnues sup-

plémentaires pour pouvoir trouverx1etx2.On va voir que ceci est possible en considérant le point d"attache A des deux ressorts.

Référentiel: terrestre, supposé galiléen (on ne demande pas ici de justification. On admettra que pour les problèmes posés dans ce TD cette hypothèse est vérifiée avec une bonne approximation. voir cours pour un peu plus de détails.) Repère: On choisit comme repèreR(0,~i) (voir le schéma ci-dessus) Système: On considère comme système le point d"attache A des deux ressorts. Bilan des forces extérieures(BFE) : Faisons un bilan des forces extérieures s"exerçant sur ce système : -forces à distance : aucune, car la masse de ce point étant nulle, le poids est nul. -forces de contact :UJF L1 1 TD Phy 12a/12b Phy 12a/12b Oscillateur harmonique : corrections 2013-2014 - la force de rappel exercée par le ressort 1 sur A : ~F1!AAE¡k1x1~i - la force de rappel exercée par le ressort 2 sur A : ~F1!AAEk2x2~i PI: Le référentiel étant galiléen, on peut uti- liser le principe d"inertie. Puisque le système est immobile, d"après le principe d"inertie, le système est isolé. Ainsi :

F1!AÅ~F2!AAE¡k1x1~iÅk2x2~iAE~0.Ainsi, en projetant cette relation sur Ox, on obtient : 0AE¡k1x1Åk2x2(1), relation que

l"on peut réécrire ainsi :x1AEk2x2k 1. On a donc bien obtenu une nouvelle équation reliantx1etx2, sans inconnue supplé- mentaire. En utilisantDAEl1Ål2Åx1Åx2, on obtient les résultats cherchés : x

1AEk2k

1Åk2(D¡(l1Ål2)) etx2AEk1k

1Åk2(D¡(l1Ål2)).

Remarques :

- Les résultats sont bien homogènes. - Les résultats sont symétriques par échange des indices 1 et 2 : ceci est cohérent avec le fait que les deux ressorts ont des rôles équivalents - Si la somme des longueurs à vide correspond àD, on s"attend à un allongement nul des ressorts, ce qui est bien le cas avec les relations obtenues.

(Cette étude a été menée en supposant les ressorts compressibles. On pouvait donc considérer le

cas oùDÇl1Ål2. Ceci n"est pas toujours vérifié, par exemple avec ceux utilisés lors du TP, où les

spires se retrouvent au contact les unes des autres lorsque l"on essaie de comprimer le ressort à

partir de sa position de repos. Dans ce cas, l"approximation linéaire n"est plus valable et on ne peut

donc pas utiliser les équations trouvées.)2.C alculerp ourch aquer essortla for cequ "ile xercesur l emur au quelil est fixé. C omparer.

Afin de prévoir la force exercée par le mur sur le ressort 1, isolons maintenant le sys- tème consitué par le ressort 1.

Système: {ressort 1}

Bilan des forces extérieures:

-forces de contact : la force de rappel exercée par le ressort 2 au point A : ~F2!A la force exercée par le mur ~Fmur!1.

PI -Le système étant à l"équilibre, d"après le PI :~F2!AÅ~Fmur!1AE~0.UJF L1 2 TD Phy 12a/12b

Phy 12a/12b Oscillateur harmonique : corrections 2013-2014

Ainsi :

1Åk2(D¡(l1Ål2))~i.

Or ~F1!murAE¡~Fmur!1, donc :

F1!murAEk1k2k

1Åk2(D¡(l1Ål2))~i.

De même, en isolant le ressort 2, on obtient :

F2!murAE¡k1k2k

1Åk2(D¡(l1Ål2))~i.

Onremarqueque:

Il s"agit de la relation que l"on obtient à l"aide du PI appliqué au système constitué par

l"association des deux ressorts. Le résultat est donc cohérent.3.C alculerla for cequi ag itsu rle p ointcommun aux deu xr essorts,lo rsqueles r essortssont

écartés dexpar rapport à la position d"équilibre. Soit ~Fla force exercée sur le point d"attache A.

On a :

Ainsi, en utilisant la relation (1), on obtient :

FAE¡(k1Åk2)x~i.

ressort accroché au mur de gauche, de constante de raideurk1Åk2, et de longueur à

videl1Åx1.4.E nsupp osantq uece point commun a une mas sem, écrire l"équation qui régit le mouve-

ment dem. Pour cela on repérera la masse sur un axe horizontal par sa positionx(xAE0 quand le système est immobile). ment) sont perpendiculaires au mouvement et se compensent. En projetant sur l"axe

Oxet en utilisant la forme trouvée à la question précédente (xa bien la même défini-

tion) on a : m xAE05.Dé terminercomplètementx(t)ensupposantqu"àtAE0lamasseestlâchéedepuisx0sans vitesse.UJF L1 3 TD Phy 12a/12b Phy 12a/12b Oscillateur harmonique : corrections 2013-2014

L"équation différentielle à résoudre est une équation différentielle homogène linéaire

à rechercher des solutions exponentielles complexes. Ici nous sommes dans un cas classique (terme du premier ordre absent et terme constant positif) caractéristique de l"oscillateur harmonique. Les solutions sont des fonctions sinusoïdales de pulsa- tion!0AEqk

1Åk2m

x(t)AEAcos(!0tÅÁ) oux(t)AE®cos(!0t)ůsin(!0t) tions connues car l"équation est d"ordre 2. Ici les deux conditions connues sont les conditions initiales sur la position et la vi- tesse :x(0)AEx0etx(0)AE0. On trouve facilement (AAEx0etÁAE0) ou (®AEx0et¯AE0) ce qui nous donne la solution complète : x(t)AEx0cos(!0t) avec!0AEsk

1Åk2m

Ressort et gravité

?Exercice n° 2 Une massemest pendue à un ressort sans masse de raideurket de longueur à videl0. On repérera la position de la massempar sa coordonnéezsur un axe vertical.

Orientons l"axe vertical par un vecteur unitaire

# uzdirigé vers le bas.1.Dé terminerla long ueurl00du ressort lorsquemest à l"équilibre.

Les forces sur la massemsont son poidsm#gAEmg# uzet la force de rappel du ressort#FAE¡k(l00¡l0)# uz(sil00Èl0le ressort est en extension et donc "tire vers le haut" ce qui

explique le signe "-»). L"équilibre de la masse s"écrit donc : m #gÅ#FAE#0,mg# uz¡k(l00¡l0)# uzAE#0)mg¡k(l00¡l0)AE0UJF L1 4 TD Phy 12a/12b Phy 12a/12b Oscillateur harmonique : corrections 2013-2014

On en déduit donc la position d"équilibre.

l

00AEl0Åmgk

2. O né cartela masse v ersl ebas d "uned istance¢zpar rapport à sa position d"équilibre. dez. Le choix de l"origine deszle plus naturel pourrait être celui correspondant à l"allon- gement " à vide ». Dans ce cas l"allongement du ressort vaudrazet la force de rap- pel s"écrira très simplement#FAE ¡kz# uz. Cependant nous savons par expérience que la masse va osciller autour de sa position d"équilibre et il apparaît donc judicieux de choisirl"origineencepoint.Danscecaslaforcederappels"écrit#FAE¡k(zÅl00¡l0)# uz.

Le PFD s"écrit donc :

m #aAEm#gÅ#F,m¨z# uzAEmg# uz¡k(zÅl00¡l0)# uz)m¨zAEmg¡k(z¡l00¡l0) Comme on a montré quek(l00¡l0)AEmgon en déduit que l"équation du mouvement est : m

¨zAE¡kz3.Résoudr ecett eéqu ationen supp osantqu "àtAE0 on a lâché la masse sans vitesse initiale.

L"équation différentielle à résoudre est une équation différentielle homogène linéaire

à rechercher des solutions exponentielles complexes. Ici nous sommes dans un cas classique (terme du premier ordre absent et terme constant positif) caractéristique de l"oscillateur harmonique. Les solutions sont des fonctions sinusoïdales de pulsa- tion!0AEqk m z(t)AEAcos(!0tÅÁ) ouz(t)AE®cos(!0t)ůsin(!0t) tions connues car l"équation est d"ordre 2. Ici les deux conditions connues sont les conditions initiales sur la position et la vi- tesse :z(0)AE¢zetz(0)AE0. On trouve facilement (AAE¢zetÁAE0) ou (®AE¢zet¯AE0) ce qui nous donne la solution complète :UJF L1 5 TD Phy 12a/12b Phy 12a/12b Oscillateur harmonique : corrections 2013-2014 z(t)AE¢zcos(!0t) avec!0AEsk m i Remarquez que si le choix de l"origine deszavait été fait sur la position d"équi- libre du ressort à vide (l0), l"équation différentielle du mouvement aurait com- tion homogène en faisant le changement de variablez!ZÅmgk (ce qui revient à changer l"origine desz). L"autre possibilité est de résoudre l"équation telle quelle en prenant la solution générale sans second membre et une solution particulière (icizAEmgk

est une solution particulière évidente).4.R eprendrel epr oblèmeen u tilisantla con servationde l "énergieméca nique.

Toutes les forces considérées sont conservatives on peut donc appliquer le théorèmequotesdbs_dbs4.pdfusesText_8
[PDF] acoustique physique - BTS - Sciences-Physiques

[PDF] TD 4 Travaux dirigés

[PDF] Chapitre 5 : les immobilisations

[PDF] Adjectif : attribut ou épithète - Le petit roi, enfant autiste

[PDF] Exonet Adressage IPv6 - Réseau Certa

[PDF] Exercez-vous : l ' ORGANISATION COMPTABLE - AFPA web TV

[PDF] 5 fiches sur les aires - MA MAITRESSE DE CM1-CM2

[PDF] Exercices de géométrie - Périmètres, aires et volumes (PAV)

[PDF] 6ème Aires et Périmètres Fiche d 'exercices-aires - Page d 'Accueil

[PDF] Périmètres et aires - Matheur

[PDF] Algorithme exercices - Lycée d 'Adultes

[PDF] Algorithme exercices - Lycée d Adultes

[PDF] Algorithmique Suites - Logamathsfr

[PDF] Je révise l essentiel du programme d anglais au primaire

[PDF] Anglais CP - Académie en ligne