[PDF] PROBL`EMES DE THERMODYNAMIQUE (L2) et leurs corrigés





Previous PDF Next PDF



Exercices de Thermodynamique

Q : Comparer les pressions données par les équations d'état du gaz parfait et du gaz de Van der. Waals la valeur exacte étant P = 38



Résumé de cours et exercices corrigés

Exercices sur le premier principe de la thermodynamique…………………… 6 Calculer ? ? et ? pour un gaz dont l'équation d'état est (. ).



Les changements détat du corps pur : transformations physiques et

10 juil. 2013 Corrigé des exercices ... Le diagramme de changement d'état de ... https://www.bibnum.education.fr/physique/thermodynamique/l-helium-liquide ...



«EXERCICES ET PROBLEMES CORRIGES DE

les plus récentes menés dans les états membres. La diffusion de cet ouvrage s'intitulant «Exercices et problèmes corrigés de thermodynamique chimique» vise 



SERIE DEXERCICES N° 27 : THERMODYNAMIQUE : CORPS PUR

L'état initial I correspond à une vapeur saturante sèche ( xV1 = 1 ) à la température T1 = 485 K (à la pression P1 = f (T1) = 20 bar ). L'état final. F 



Physique : THERMODYNAMIQUE CORRECTION - TD PHYSIQUE 6

Physique : THERMODYNAMIQUE. CORRECTION - TD PHYSIQUE 6 : Changements d'état du corps pur Exercice n°3 : Diagramme de phases du dioxyde de carbone.



PROBL`EMES DE THERMODYNAMIQUE (L2) et leurs corrigés

une transformation isotherme o`u le gaz passe de l'état A2 `a l'état A3(T2V2



Exercices thermodynamique premier et deuxième principe Exercice

Exercice 0 énergie interne - travail – chaleur ; Changement d'état CORRIGE Exercices thermodynamique premier et deuxième principe.



Exercices sur les transferts thermiques Exercices sur les transferts

Donner l'expression de l'énergie de changement d'état d'une espèce chimique de masse m. Corrigé des exercices sur les transferts thermiques.



PROBL`EMES DE THERMODYNAMIQUE (L3) et leurs corrigés

On imposera `a l'équation trouvée d'avoir comme limite l'équation d'état des gaz parfaits pour les grands volumes. d) Faire le même exercice si l'on se 



Applications classiques en thermodynamique - Méthode Physique

Exercice 1 1 On se propose d’établir l’identification de la pression thermodynamique P thermo à la pression P telle qu’elle a été définie jusqu'à présent dans le cas simple d’un système fermé et calorifugé évoluant de manière réversible au voisinage d’un état d’équilibre thermodynamique



Fiche d’exercices : Révision 2 : Changement d’état

atteint 0°C ? Quel est le nom de ce changement d’état ? 6-!A partir de quel instant n’y a-t-il plus du tout de liquide ? Exercice 3 : On chauffe de l’eau dans un bécher et on relève sa température toutes les minutes Les résultats des mesures sont donnés dans le tableau ci-dessous



Chapitre 6- Correction des exercices - Etude des changements

Exercice 2 : Cette courbe montre comment évolue la température d'une substance B au cours du temps Au cours de cette expérience a eu lieu un changement d'état 1) Combien de temps a duré l'expérience ? 10 minutes 2) Quelle est la température de cette substance 4 min après le début de l'expérience ? 6°C

Comment faire des exercices thermodynamiques ?

Tu peux t’entraîner à faire cet exercice ! Les exercices avec masse et piston sont assez courants en thermodynamique. En voici un assez classique, tu pourras trouver des énoncés légèrement différents mais similaires. On considère un cylindre aux parois athermanes fermé par un piston.

Quels sont les principes de la thermodynamique ?

L'ouvrage englobe les notions fondamentales de thermodynamique, traite les lois des gaz parfaits et les principes de la thermodynamique; définit les principales fonctions de la thermodynamique: enthalpie et entropie. Par ailleurs, il met en exergue l'importance de la vapeur d'eau et les cycles thermodynamiques associés à sa production.

Comment définir la pression thermodynamique?

On se propose d’établir l’identification de la pression thermodynamique Pthermoà la pression P telle qu’elle a été définie jusqu'à présent dans le cas simple d’un système fermé et calorifugé évoluant de manière réversible au voisinage d’un état d’équilibre thermodynamique.

Quels sont les transferts thermiques entre les gaz de gauche et de droite ?

Il y a en revanche des transferts thermiques entre les deux gaz, on notera Q 1 celui subi par le gaz de gauche et Q 2 celui subi par le gaz de droite. Les capacités calorifiques étant indépendantes de la température d’après l’énoncé : On vérifie très facilement que cette formule est bien homogène (tu peux t’entraîner à le faire).

PROBL

EMES DE

THERMODYNAMIQUE (L2)

et leurs corriges

Christian Carimalo

Novembre 2004

I.Un bloc de cuivre de 100 grammes porte a une temperature de 0C est plonge dans 50 grammes d'eau a 80 C. Le systeme atteint une temperature d'equilibre T. On supposera que l'ensemble Eau + Cuivre est isole ( on ne tient pas compte des parois du recipient). La chaleur massiqueCCudu cuivre (capacite calorique par unite de masse) est de 400 J kg1K1, celle de l'eauCeauest de 4180 J kg1K1. Elles sont supposees constantes et independantes de la temperature. Pour l'application numerique, on prendraCeau= 4000 J kg1K1. En appliquant le premier principe de la thermodynamique, determiner la temperature d'equilibre T. II.Un gaz d'equation d'etatV=V(T;P)a pour coecient de dilatation thermique isobare =R=PVet pour coecient de compressibilite isothermeT=RT=V P2ouRest la constante des gaz parfaits (constante de Mayer). Donner en fonction deet deT l'expression de la dierentielledVdu volume du gaz en fonction dedTetdP. Par integration, en deduire l'equation d'etat du gaz sachant que pourV= 2bon aT=bP=R. On rappelle les denitions des coecientsetT: =1V @V@T P T=1V @V@P T III.xmoles d'un gaz parfait monoatomique de masse molaire m sont comprimees dans un compresseur compose d'un cylindre et d'un piston. Le compresseur a une masseMet une chaleur massiqueC. Ce compresseur est thermiquement isole de l'exterieur. Le gaz passe de l'etatA(T1;V1)a l'etatB(T2;V2)de facon quasi-statique et reversible. Les parois du compresseur absorbent de la chaleur de maniere reversible ce qui implique qu'a tous les instants la temperature de l'ensemble gaz + compresseur est uniforme. 1 )Determiner la quantite de chaleur recue par le metal du compresseur lors d'une variation dTde sa temperature. 2 )Quel est le travail elementaire recu par le gaz lors d'une variationdVde son volume? 3 )Quelle est la capacite calorique a volume constantCvdesxmoles du gaz monoato- mique? 4 )Quelle est la variation d'energie interne du gaz pour des variationsdTetdVde sa temperature et de son volume, respectivement? 5 )A l'aide du premier principe applique au gaz, determiner l'equation dierentielle liant la temperature du gaz a son volume. 6 )Deduire par integration de cette equation la temperature nale du gaz en fonction deR, C,x,T1,V1,V2etM.Christian Carimalo3Problemes de Thermodynamique IV.Dans un moteur de Stirling, une moled'un gaz parfait diatomique de chaleur molaire a volume constantCvparcourt de facon quasi-statique et reversiblele cycleA1;A2;A3;A4 comprenant une transformation isochore ou le gaz passe de l'etatA1(T1;V1;P1)a l'etatA2(T2;V1;P2) avecT2> T1; une transformation isotherme ou le gaz passe de l'etatA2a l'etatA3(T2;V2;P3); une transformation isochore ou le gaz passe de l'etatA3a l'etatA4(T1;V2;P4); la compression isothermeA4A1. Les donnees du cycle sont : les temperatures extr^emesT1etT2, le volumeV2, le taux de compressiona=V2V

1. Dans la gamme de temperatures entreT1etT2, on prendraCv=5R2

1 )Dessiner le cycle dans le diagramme(P;V)(diagramme de Clapeyron). Pour quelle raison ce cycle est-il moteur? 2 )Determiner les pressionsP1;P2;P3etP4en fonction deT1;T2;V2;aetR. 3 )Calculer les travauxW12;W23;W34;W41recus par le gaz sur chaque branche du cycle, en fonction des donnees. 4 )Calculer les chaleursQ12;Q23;Q34;Q41recues par le gaz sur chaque branche du cycle, en fonction des donnees. Preciser sur quelles branches le gaz recoit eectivement de la chaleur. 5 )Le rendement du cycle est=WQ

12+Q23ouWest le travail total recu par le gaz a la

n du cycle. Calculeren fonction deT1;T2eta. 6 )Application numerique. On donnea= 2;ln2 = 0;7;t1= 20C;t2= 300C. Donner, pour chaque cycle parcouru, l'ordre de grandeur de l'energie consommee par le moteur et l'energie recuperable.Christian Carimalo4Problemes de Thermodynamique

Corrige

- I - Ueau+ UCu= 0(systeme isole). CommeUeau=MeauCeau(TfT1),UCu= M

CuCCu(TfT2), on en deduit

T f=MeauCeauT1+MCuCCuT2M eauCeau+MCuCCu;outf=MeauCeaut1+MCuCCut2M eauCeau+MCuCCu= 67C xxxxxxxxxxxxxxxxxxxxxxxxxxxx - II - dV=V dTV TdP=RdTP RTdPP

2=dRTP

, d'ouV=K+RTP ouKest une constante telle queV= 2b=K+RP bPR =K+b, soitK=b. On obtient ainsi l'equation d'etat

P=RTVb

xxxxxxxxxxxxxxxxxxxxxxxxxxxx - III - 1 )dQcompr:=MCdT=dQgaz. 2 )dW=PdV=xRTV dV. 3 )Cv=x3R2 4 )dU=CvdT. 5 )CvdT=xRTV

MCdT, d'ouadVV

=dTT , aveca=xRC v+MC. 6 )L'integration donneTVa= constante, puisT2=T1V1V 2 a xxxxxxxxxxxxxxxxxxxxxxxxxxxx - IV - 1 )Dans le plan(P;V), le cycle est parcouru dans le sens inverse du sens trigonometrique (voir gure). Le cycle est donc moteur. 2 )On applique l'equation d'etat :P1=RT1V

1,P2=RT2V

1,P3=RT2V

2=RT2aV

1,P4=RT1V

2= RT 1aV 1. 3

)W12=W34= 0(isochores);W23=RT2lna,W41=RT1lna(isothermes).Christian Carimalo5Problemes de Thermodynamique

V A1 V 1V2A 4A 3A 2P4 )Q12= 12U=Cv(T2T1)>0,Q34= 34U=Cv(T1T2)<0;U= 0pour une isotherme (gaz parfait), doncQ23=W23>0,Q41=W41<0. 5 1T1T 2 11 + 52lna
1T1T 2quotesdbs_dbs4.pdfusesText_8
[PDF] le lait est il un mélange homogène ou hétérogène

[PDF] mélange homogène et hétérogène 5ème

[PDF] biere melange homogene ou heterogene

[PDF] lors d'une distillation le liquide se transforme en

[PDF] le sang est-il un mélange homogène ou hétérogène

[PDF] questions éthiques personne handicapée

[PDF] ethique et handicap

[PDF] l'intimité des personnes handicapées en institution

[PDF] tableau incompatibilité produits chimiques clp

[PDF] compatibilité stockage produits chimiques nouvel étiquetage

[PDF] tableau incompatibilité produits chimiques inrs

[PDF] stockage des produits chimiques. guide de bonnes pratiques en entreprise

[PDF] stockage produits chimiques code du travail

[PDF] stockage produits chimiques incompatibles

[PDF] stockage et transfert des produits chimiques dangereux - dossier inrs