[PDF] Exercices des Chapitres II-5 et II-6 INDUCTION ET AUTOINDUCTION





Previous PDF Next PDF



école numérique - theme : electricite titre de la leçon : auto-induction école numérique - theme : electricite titre de la leçon : auto-induction

Remarque : L est le coefficient de proportionnalité entre le flux propre p et l'intensité du courant électrique I. Exercice d'application 2. Un solénoïde de 



Exercices des Chapitres II-5 et II-6 INDUCTION ET AUTOINDUCTION

Corrigé des Exercices Chapitre II-5 et II-6 "Induction et Auto-induction". Exercices des Chapitres II-5 et II-6. INDUCTION ET AUTOINDUCTION. EXERCICE 1. "Test 



218 exercices corrigés Mécanique (98 exercices corrigés 218 exercices corrigés Mécanique (98 exercices corrigés

EXERCICE 07. Une automobile démarre lorsque le feu passe au vert avec une Induction Électromagnétique. Induction Électromagnétique. Page 63. Physique ...



Fondements de linduction Fondements de linduction

Indiquer qualitativement comment varie l'amplitude du courant appelé par l'inducteur. Exercice 5 : Peut-on négliger l'auto-induction ? [◇◇♢]. R.



Ch. 7 : Induction et autoinduction Ch. 7 : Induction et autoinduction

1 mars 2010 1et_ch7(Induction).odt Marie Pierrot – Lycée du Rempart 01/03/10. Exercices : Contrôle des connaissances et exercice 5 p101. Exercice d' ...



SERIE 8 : INDUCTION-AUTOINDUCTION ET DIPOLES RL TS 12

Exercice 8.1 : Rails de Laplace horizontaux – vitesse limite. Une tige de cuivre glisse sans frottement sur deux rails horizontaux distants de d = 15 cm.



PHYSIQUE-CHIMIE- TECHNOLOGIE

Phénomène d'induction et d'auto-induction. 8.1. Induction électromagnétique exercices corrigés. Collection GADO Terminales D. C et E. ➢ Tous autres ...



Devoir n°6: induction et auto-induction

Exercice n°2 : (7 points). Une bobine a une résistance R à ses bornes. On approche le pôle sud d'un aimant droit comme indiqué sur la figure ci- contre. 1 



I. Rail de Laplace

auto-induction et donc à négliger l'inductance propre du circuit. Ainsi φ ≃ φext. On trace le schéma électrique équivalent : e − Ri = 0 e = Ri φ = B · S ...



Induction électromagnétique. Exercice II : Détermination de la

Corrigé IV : 1) n=1 correspond à l'état fondamental. correspond à l'état d 4) Les énergies sont négatives car le niveau de référence de l'énergie est le ...



Fondements de linduction Fondements de linduction

Indiquer qualitativement comment varie l'amplitude du courant appelé par l'inducteur. Exercice 5 : Peut-on négliger l'auto-induction ? [???].



Induction électromagnétique. Exercice II : Détermination de la

3) Z=11 et N=A-Z=12 donc le noyau de l'atome de sodium est constitué de 11 protons et 12 neutrons. 4) Les énergies sont négatives car le niveau de référence de 



Exercices des Chapitres II-5 et II-6 INDUCTION ET AUTOINDUCTION

Corrigé des Exercices Chapitre II-5 et II-6 "Induction et Auto-induction". Exercices des Chapitres II-5 et II-6. INDUCTION ET AUTOINDUCTION. EXERCICE 1.



Premier exercice : (7 points) Oscillateur mécanique

Le but de cet exercice est d'étudier les oscillations libres d'un Corrigé. Note. A.1. Branchement de l'oscilloscope. ... Phénomène d'auto-induction.



SERIE 8 : INDUCTION-AUTOINDUCTION ET DIPOLES RL TS 12

Exercice 8.1 : Rails de Laplace horizontaux – vitesse limite. Une tige de cuivre glisse sans frottement sur deux rails horizontaux distants de d = 15 cm.



Premier exercice : (7 points) Étude du mouvement dun skieur V ?

Deuxième exercice : (7 points) Induction électromagnétique et auto-induction Corrigé. Note. A.1. Les forces qui s'exercent sur (S) sont : le poids.



Induction

Feb 21 2020 Exercice 1 : Rails de Laplace utilisés comme moteur ... à atténuer l'augmentation de i induite par celle de e0 : l'effet de l'autoinduction.



Freinage par induction

dans cet exercice une attraction proposant aux passagers d'une cabine Si R = 0 il faut prendre en compte le phénomène d'auto-induction.



?????? ?????????? ????? ???????? ??????? ???????? ?

Feb 27 2017 Premier exercice : (7 ½ points) Oscillateur mécanique. Une tige rigide métallique MN



TD15 : Induction électromagnétique – corrigé

Cette auto-induction a tendance à diminuer la variation de flux et donc diminue la tension U mesurée par le voltmètre. Exercice 5 : Inductance propre d'un 

Exercices des Chapitres II-5 et II-6 INDUCTION ET AUTOINDUCTION

1° STI Electronique ( Physique Appliquée ) Christian BISSIERES

http://cbissprof.free.fr Page 1 sur 2 Corrigé des Exercices Chapitre II-5 et II-6 "Induction et Auto-induction" Exercices des Chapitres II-5 et II-6 INDUCTION ET AUTOINDUCTION

EXERCICE 1

"Test rapide" ? La tension d"induction qui apparaît aux bornes d"un circuit est appelée : ? f.i.m. ? f.m.m. ???? f.e.m.(force électromotrice) ? Dans le phénomène d"induction, la source de champ magnétique se nomme : ? l"induit ???? l"inducteur ? l"inductance ? Dans le phénomène d"induction, le circuit où apparaît la tension se nomme ??? l"induit ? l"inducteur ? l"inductance

? Le phénomène d"induction apparaît lorsqu"un circuit est soumis a un champ magnétique :

? d"intensité élevée ? uniforme ???? variable dans le temps ? Une tension induite apparaîtra aux bornes d"un circuit plongé dans un champ magnétique : ? de faible intensité ? de forte intensité ???? il manque des données pour de se prononcer (champ variable ou pas ?) ? Une bobine est soumise à un champ magnétique uniforme et constant.

Pour qu"il y ait induction, il faut que :

? la bobine possède un nombre élevé de spires

? l"axe de la bobine soit de même direction que le champ magnétique ???? la bobine se déplace perpendiculairement au champ magnétique

? La loi de Lenz nous dit, entre autre, que le courant induit produit à son tour un champ magnétique qui s"oppose : ? au champ magnétique inducteur ???? à la variation du champ magnétique inducteur ??? à la cause qui lui a donné naissance ? Les courants d"induction volumiques sont appelés : ? courants de Lenz ? courants de Farad ???? courant de Foucault.

EXERCICE 2

"Conducteur mobile" ? Les électrons (q < 0), dans la tige mobile, sont soumis à la force de Lorenz

F qV B= Ù? ?? ??

(voir schéma de gauche).

Les électrons de la tige se déplacent vers l"avant, le courant circule donc vers l"arrière de

la tige. On a donc i < 0 (le sens réel du courant est opposé à la convention). ? Calculons d"abord la fem e aux bornes de la tige : e B. .V 2 0,08 2 0,32V= = ´ ´ =

Appliquons ensuite la loi d"Ohm

3 e 0,32 iR

200.10

soit i 1,6A=

EXERCICE 3

"Conducteur mobile"

Appliquons directement la relation

6 1000
e B. .V 20.10 0,6 130 3600
soit

V 433 V

» m

EXERCICE 4

"production d"une tension" La figure ci-dessous illustre le phénomène d"induction juste après l"instant t = 0: ■ le champ magnétique B??est dirigé vers le "fond" de la figure et commence à diminuer d"intensité (rotation de l"aimant), ■ le courant induit i dans la bobine veut s"opposer à cette diminution (voir schéma),

■ la bobine se comporte en générateur, le fil de potentiel le plus fort (pôle +) sera celui où

veut sortir le courant (comme dans une pile). ? La tension induite e est donc négative (voir branchement de l"oscilloscope). F qV B i

Les électrons ont une

charge q négative qV B F

Sens de déplacement

des électrons

Sens réel du courant

Y A Y B S e < 0 sens de rotation B

Champ magnétique

à l"instant t = 0

Sens que veut avoir

le courant induit i e < 0 car le pôle "+" de la bobine est relié

à la masse de

l"oscilloscope

1° STI Electronique ( Physique Appliquée ) Christian BISSIERES

http://cbissprof.free.fr Page 2 sur 2 Corrigé des Exercices Chapitre II-5 et II-6 "Induction et Auto-induction" ? Après l"instant t = 0, la tension induite e commence par être négative (sinusoïde "inversée"). ? On a T = 5´20 = 100ms 3 1 1 f 10tr/s

T 100.10

f 600tr/min=

EXERCICE 5

"Sens du courant induit" La méthode utilisée pour trouver le sens du courant induit est : ? Tracer le vecteur champ magnétique B??. ? Observer si B??augmente ou diminue (sens de déplacement de l"aimant). ? Le courant induit i > 0 doit produire un champ qui va s"opposer à la variation de B??.

EXERCICE 6

"Clôture électrique" ? Entre 40μs et 80μs : 3 6 6 i 600.10 0 u L 0,8t

80.10 40.10

D -= = ´D -

soit u 12000V= ? Entre 120μs et 160μs : 6 6 6 i 0 600.10u L 0,8t

160.10 120.10

D -= = ´D -

soit u 12000V= - ? Voir le schéma complété au dessus.

EXERCICE 7

"Energie dans une bobine" ? La tension U est constante, le courant i(t) va donc augmenter linéairement (graphe ci-contre) 2 1 1

W L i(t )

2= 6 1

W 10.10

i(t )1

0,5 0,2

L2

1i(t ) 10mA

■ On a

1 11 1i(t ) 0 i(t )

iU L L Lt t 0 t -D= = =D - 3 1

1i(t )

10.10 t L 0,2 U 12

1t 167 s» m

EXERCICE 8

"Mesure d"un inductance" Considérons les variations de u(t) et i(t) pour 0 < t < 10μs :

On a :

i u L tD D 6 3 3 t 10.10 0L u 20i

5.10 ( 5.10 )

D -= = ´D- -

L 20mH=

i (mA) t (μs) 600
0 0 80
40
120
160
u(t) en volt +20 0 20quotesdbs_dbs2.pdfusesText_3
[PDF] auto induction formule

[PDF] auto induction pdf

[PDF] pour communiquer en français 4aep

[PDF] auto train narbonne

[PDF] auto train nice

[PDF] auto train questions

[PDF] auto train sncf

[PDF] autocad 2014 tutorial francais pdf

[PDF] autocad 2017 serial number and product key

[PDF] autodesk product key 2014

[PDF] automate easy moeller

[PDF] autonomie électrique d une maison passive

[PDF] autonomie électrique d'une maison

[PDF] autoportrait léonard de vinci

[PDF] autorisation absence éducation nationale