[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Exercices de mathématiques - Exo7

Exercice 2. Démontrer que (1 = 2) ? (2 = 3). Correction ?. [000105]. Exercice 3. Soient les quatre assertions suivantes : ( 



Exercices de mathématiques - Exo7

Exercice 6. Calculer les primitives suivantes par changement de variable. 1. ? (cosx)1234 sinxdx. 2. ? 1 xlnx dx. 3.



Exercices de mathématiques - Exo7

Exercice 2. Écrire sous la forme a+ib les nombres complexes suivants : 1. Nombre de module 2 et d'argument ?/3. 2. Nombre de module 3 et d'argument -?/8.



Exercices de mathématiques - Exo7

Exercice 1. Montrer que les ensembles ci-dessous sont des espaces vectoriels (sur R) : — E1 = {f : [01] ? R} : l'ensemble des fonctions à valeurs réelles 



Exercices de mathématiques - Exo7

Exercice 9 *** I. Soient f et g deux endomorphismes d'un espace vectoriel de dimension finie vérifiant fg?gf = f. Montrer que f est nilpotent. Correction ?. [ 



Exercices de mathématiques - Exo7

Exercice 7. Pour quelles valeurs de a le polynôme (X +1)7 ?X7 ?a admet-il une racine multiple réelle ? Correction ?. Vidéo ?. [000410]. Exercice 8. Chercher 



Exercices de mathématiques - Exo7

g est bijective. 3. h aussi. 4. k est injective mais par surjective. Indication pour l'exercice 5 ?. Montrer 



Exercices de mathématiques - Exo7

Exercice 7. Pour quelles valeurs de a le polynôme (X +1)7 ?X7 ?a admet-il une racine multiple réelle ? Correction ?. Vidéo ?. [000410]. Exercice 8. Chercher 



Exercices de mathématiques - Exo7

Si a = 0 il n'y a pas de solution. Correction de l'exercice 2 ?. 1. Remarquons que comme le système est homogène (c'est-à-dire les coefficients 



Exercices de mathématiques - Exo7 Exo7

Réduction

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

I : Incontournable

Exercice 1**SoitA=0

@1 2 2 2 1 2

2 2 11

A . Pournentier relatif donné, calculerAnpar trois méthodes différentes. @3 0 0 8 4 0

5 0 11

A @3 1 0 41 0
4 821 A 1.

Vérifier que An"est pas diagonalisable.

2.

Déterminer K er(AI)2.

3. Montrer que Aest semblable à une matrice de la forme0 @a0 0 0b c 0 0b1 A 4.

Calculer Anpournentier naturel donné.

Vérifier quefest un endomorphisme deR2n[X]puis déterminer les valeurs et vecteurs propres def.fest-il

diagonalisable ? etB=X4X.

Vérifier quefest un endomorphisme deEpuis déterminer Kerf, Imfet les valeurs et vecteurs propres def.

Exercice 6***SoitAune matrice rectangulaire de format(p;q)etBune matrice de format(q;p). Comparer les polynômes

caractéristiques deABetBA. et quevest nilpotent. Montrer que det(u+v) =detu. Montrer queAest nilpotente si et seulement si8k2[[1;n]], Tr(Ak) =0. quefest nilpotent. Soientuetvdeux endomorphismes deEtels que9(a;b)2C2=uvvu=au+bv. Montrer queuetvont un vecteur propre en commun. 1.

Montrer que (E;)est un groupe

2. Soit Aun élément deEtel que9p2N=Ap=I2. Montrer queA12=I2. A A

Calculer detM. Déterminer les éléments propres deMpuis montrer queMest diagonalisable si et seulement si

Aest diagonalisable.

B

BBB@0b:::b

a .........b a:::a01 C CCCA. 2

Montrer que les images dans le plan complexe des valeurs propres deAsont cocycliques. (Indication : pour

calculercA, considérerf(x) =

X+x b+x:::b+x

a+x......... .........b+x a+x:::a+xX+x 1.

Montrer que 1 est v aleurpropre de A.

2.

Soit lune valeur propre deA.

(a)

Montrer que jlj61.

(b) Montrer qu"il e xisteun réel wde[0;1]tel quejlwj61w. Conséquence géométrique ? B

BBB@0:::0 1

.........0 0

1 0:::01

C CCCA

Montrer queAest diagonalisable.

B

BBBBBB@0 1 0:::0

......0 0 ...1

1 0::: :::01

C

CCCCCCA(de formatn>3). DiagonaliserJn.

2.

En déduire la v aleurde

a

0a1:::an2an1

a n1a0a1an2............ a

2...a0a1

a

1a2:::an1a0

3

1.Calculer det (Ps)pour touts2Sn.

2. (a)

Montrer que 8(s;s0)2S2n,PsPs0=Pss0.

(b) On pose G=fPs;s2Sng. Montrer que(G;)est un groupe isomorphe àSn. 3.

Soit A= (ai;j)16i;j6n2Mn(C). CalculerAPs.

4.

T rouverles v aleurspropres d"une matrice de pemutation (on pourra utiliser le résultat hors programme

: toute permutation se décompose de manière unique à l"ordre près des facteurs en produit de cycles à

supports disjoints). caractéristique est scindé surK.

Montrer qu"il existe un couple d"endomorphismes(d;n)et un seul tel quedest diagonalisable,nest nilpotent

netf=d+n. a b:::b b a .........b b:::b a dansC.

8x2R,(j(f))(x) =1x

R x

0f(t)dtsix6=0 et(j(f))(0) =f(0).

1.

Montrer que jest un endomorphisme deE.

2. Etudier l"injecti vitéet la surjecti vitéde j. 3.

Déterminer les éléments propres de j.

que pourk2 f1;2;3g,fk=lku+mkv. Montrer quefest diagonalisable. 4 Exercice 26**IRésoudre dansM3(C)l"équationX2=0 @0 1 0 0 0 1

0 0 01

A Montrer quefetgsont simultanément trigonalisables. communes si et seulement si la matricecA(B)est inversible. inversible si et seulement siPetcfsont premiers entre eux. B

B@1 1 0 0

0 1a0

0 0 1b

0 0 0 11

C CA. Peut-on trouver deux matrices distinctes semblables parmi les quatre matrices M

0;0,M0;1,M1;0etM1;1?

B

BBB@1 0:::0

2 n0:::01 C CCCA. B

BB@0:::0a1.........

0:::0an1

a

1:::an1an1

C CCAoùa1,...,ansontnnombres complexes (n>2).Aest-elle diagonalisable? parfdans chacun des cas suivants : 5 1.A=0 @1 11 1 1 1

1 1 11

A 2.A=0 @2 2 1 1 3 1

1 2 21

A 3.A=0 @66 5 41 10
76 41
A @1 37 2 614 1 371 A

Commutant de

0 @1 01 1 2 1

2 2 31

A

Estable parf. On suppose quefest diagonalisable. Montrer que la restriction defàFest un endomorphisme

diagonalisable deF. entier pair. Correction del"exer cice1 N1ère solution.A=2JI3oùJ=0 @1 1 1 1 1 1

1 1 11

A . On aJ2=3Jet plus généralement8k2N,Jk=3k1J. Soitn2N. Puisque les matrices 2JetIcommutent, la formule du binôme de NEWTONpermet d"écrire A n= (2JI)n= (I)n+nå k=1 n k (2J)k(I)nk= (1)nI+ nå k=1 n k 2 k3k1(1)nk! J = (1)nI+13 nå k=1 n k 6 k(1)nk!

J= (1)nI+13

((61)n(1)n)J 13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A ce qui reste vrai quandn=0.

Soit de nouveaun2N.

((1)nI+13 (5n(1)n)J)((1)nI+13 (5n(1)n)J) =I+13 ((5)n1+(5)n1)J+19 (1(5)n(5)n+1)J2 =I+13 ((5)n1+(5)n1)J+39 (1(5)n(5)n+1)J=I; et donc A n=13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

Finalement

8n2Z,An=13

0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A .2ème solution.Puisque rg(A+I) =1, dim(Ker(A+I)) =2 et1 est valeur propre deAd"ordre au moins

2. La troisième valeur proprelest fournie par la trace :l11=3 et doncl=5. Par suite,cA=

(X+1)2(X5).

De plus,0

@x y z1 A

2E1,x+y+z=0 et doncE1=Vect(e1;e2)oùe1=0

@1 1 01 A ete2=0 @1 0 11 A

De même,

0 @x y z1 A

2E1,x=y=zetE5=Vect(e3)oùe3=0

@1 1 11 A

On poseP=0

@1 1 1 1 0 1 01 11 A etD=diag(1;1;5)et on aA=PDP1.

Calcul deP1. Soit(i;j;k)la base canonique deR3.

8 :e 1=ij e 2=ik e

3=i+j+k,8

:j=ie1 k=ie2 e

3=i+ie1+ie2,8

>:i=13 (e1+e2+e3) j=13 (2e1+e2+e3) k=13 (e12e2+e3) 7 et doncP1=13 0 @12 1 1 12

1 1 11

A . Soit alorsn2Z. A n=PDnP1=13 0 @1 1 1 1 0 1 01 11 A0 @(1)n0 0

0(1)n0

0 0 5 n1 A0 @12 1 1 12

1 1 11

A 13 0 @(1)n(1)n5n (1)n0 5n

0(1)n5n1

A0 @12 1 1 12

1 1 11

A =13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

et on retrouve le résultat obtenu plus haut, le calcul ayant été mené directement avecnentier relatif.

3ème solution.Soitn2N. La division euclidienne deXnparcAfournit trois réelsan,bnetcnet un polynôme

Qtels queXn=cAQ+anX2+bnX+cn. En prenant les valeurs des membres en 5, puis la valeur des deux membres ainsi que de leurs dérivées en1 , on obtient 8 :25an+5bn+cn=5n a nbn+cn= (1)n

2an+bn=n(1)n1,8

:b n=2ann(1)n

35an+cn=5n(1)n+5n

an+cn=(n1)(1)n,8 >:a n=136 (5n+(6n1)(1)n) c n=136 (5n+(30n+35)(1)n) b n=136 (25n+(24n2)(1)n).

Le théorème de CAYLEY-HAMILTONfournit alors

A n=136 136
0 (5n+(6n1)(1)n)0 @9 8 8 8 9 8

8 8 91

A +2(5n(12n+1)(1)n)0 @1 2 2 2 1 2

2 2 11

A +(5n+(30n+35)(1)n)0 @1 0 0 0 1 0

0 0 11

A1 A 136
0 @125n+24(1)n125n12(1)n125n12(1)n

125n12(1)n125n+24(1)n125n12(1)n

125n12(1)n125n12(1)n125n+24(1)n1

A 13 0 @5n+2(1)n5n(1)n5n(1)n 5 n(1)n5n+2(1)n5n(1)n 5 n(1)n5n(1)n5n+2(1)n1 A

On retrouve encore une fois le même résultat mais pourn2Nuniquement.Correction del"exer cice2 NSoitX2M3(R). SiX2=AalorsAX=X3=XAet doncXetAcommutent.

Aadmet trois valeurs propres réelles et simples à savoir 1, 3 et 4. DoncAest diagonalisable dansRet les sous

espaces propres deAsont des droites.Xcommute avecAet donc laisse stable les trois droites propres deA.

Ainsi une base deM3;1(R)formée de vecteurs propres deAest également une base de vecteurs propres deX

ou encore, siPest une matrice réelle inversible telle queP1APsoit une matrice diagonaleD0alors pour la

même matriceP,P1XPest une matrice diagonaleD. De plus X

2=A,PD2P1=PD0P1,D2=D0,D=diag(p3;2;1)

cequifournithuitsolutionsdeuxàopposées. OnpeutprendreP=0 @2 0 0

16 1 0

quotesdbs_dbs29.pdfusesText_35
[PDF] Elements de correction td 1elements de correction de l 'exercice 3 du

[PDF] Fiche ressource Escrime ? l 'école Echauffement Fiche N°1

[PDF] Exercice 1 - ISLM - Corrigé

[PDF] Gestion des ressources humaines - Dunod

[PDF] UML 2 par la pratique Études de cas et exercices corrigés Pascal

[PDF] Il était une fois des mots 1 À la découverte de Petite histoire de la

[PDF] Jardiniers des mots - Exercices - Académie de Nancy-Metz

[PDF] TS : DS3 correction Exercice 1 De l 'évolution des populations ? l

[PDF] Excel 2007 - Exercice sur le tableau croisé dynamique - mes fiches

[PDF] Travaux Pratiques Microsoft Excel 2010 - Fiche n°1

[PDF] Exercice 206 : Excel Corrigé Décapex - cterriercom

[PDF] LA FONCTION SI()

[PDF] 04 exercices Fonctions exponentielles - Euler

[PDF] TD Chapitre 3 : La séquence codante d 'un gène permet l 'expression

[PDF] Introduction a l 'electronique analogique - Cours et exercices corriges