[PDF] Cours dIntroduction au Calcul des Probabilités





Previous PDF Next PDF



Exercices de licence

12.1 Différentielles d'ordre supérieur. Exercice 365 (Rappel du Cours) Soient E1E2 et F des espaces normés et B : E1×E2 ? F une application.



ANALYSE FONCTIONELLE ET TH´EORIE DES OP´ERATEURS

D. 1.4 Exercices compléments de cours. Exercice 1.4.1 (théor`eme de Hellinger-Toeplitz) Soit H un espace de Hil- bert et T : H ? H une application 



VARIABLE COMPLEXE EXERCICES et ANNALES

Exercice 2.13 Soit ? un ouvert connexe de C et f : ? ? C une application de a) Montrer que si c = 0 f est la composée d'une similitude directe et d' ...



ALGÈBRE Cours et Exercices Première Année LMD

2 Ensembles et Applications 2.2.2 Image directe et Image réciproque . ... de la partie Algèbre de l'unité d'Enseignement Maths1 de premières.



COMPL´EMENTS EN ANALYSE COURS et EXERCICES

COURS et. EXERCICES. Isabelle Chalendar et Emmanuel Fricain. - 2010-2011 - 2.1 Adjoint d'une application linéaire continue . ... est directe).



Cours de mathématiques M22 Algèbre linéaire

Matrice d'une application linéaire . Mini-exercices ... parties d'un cours de H. Ledret et d'une équipe de l'université de Bordeaux animée par.



Cours dIntroduction au Calcul des Probabilités

1.6 Exercices . du cours ou des sujets d'examen ou de D.S. d'autres des approfondisse- ... http://math.univ-lille1.fr/~suquet/.



MICROECONOMIE 1 DOCUMENT DE TRAVAUX DIRIGES

UNIVERSITE DE LILLE 1 document d'exercices de travaux dirigés et les démonstrations du cours. ... V21) Les élasticités-prix : directe et croisée.



Intégration Analyse de Fourier Probabilités

2 sept. 2010 5.1.3 Application aux calculs de volumes et d'espérances . ... Dans ce cours nous nous limiterons aux mesures à valeurs dans R+ que nous ...



Simulation

La vérification est un simple exercice de Licence laissé au lecteur. 4 Algorithmes de rejet. La méthode du rejet (appelée aussi d'acceptation-rejet) peut être 

Cours dIntroduction au Calcul des Probabilités Université des Sciences et Technologies de Lille

U.F.R. de Mathématiques Pures et Appliquées

Bât. M2, F-59655 Villeneuve d"Ascq CedexIntroduction au

Calcul des Probabilités

Probabilités à Bac+2 et plus si affinités...Charles SUQUET

L2 2007-2008

Table des matières

1 Espaces Probabilisés

1

1.1 Introduction

1

1.2 Événements

2

1.3 La probabilité comme fonction d"ensembles

5

1.4 Exemples

13

1.5 Remarques sur le choix d"un modèle

17

1.6 Exercices

19

2 Conditionnement et indépendance

29

2.1 Probabilités conditionnelles

29

2.1.1 Introduction

29

2.1.2 Propriétés

31

2.1.3 Quelques exemples

34

2.2 Indépendance

36

2.2.1 Indépendance de deux événements

36

2.2.2 Indépendance mutuelle

39

2.2.3 Épreuves répétées

40

2.3 Exercices

42

3 Variables aléatoires discrètes

51

3.1 Introduction

51

3.2 Généralités

52

3.2.1 Variable aléatoire discrète

52

3.2.2 Loi d"une variable aléatoire discrète

53

3.2.3 Fonction de répartition

54

3.3 Lois discrètes classiques

58

3.3.1 Lois de Bernoulli

58

3.3.2 Loi uniforme sur un ensemble fini de réels

58

3.3.3 Lois binomiales

58

3.3.4 Lois hypergéométriques

59

3.3.5 Lois géométriques

61
i

3.3.6 Lois de Poisson. . . . . . . . . . . . . . . . . . . . . . 63

3.3.7 Sur le caractère universel de la loi de Poisson

70

3.4 Exercices

73

4 Vecteurs aléatoires discrets

83

4.1 Introduction

83

4.2 Vecteurs aléatoires

84

4.3 Variables aléatoires indépendantes

86

4.4 Exercices

90

5 Moments des v. a. discrètes

97

5.1 Espérance

97

5.2 Moments d"ordrer. . . . . . . . . . . . . . . . . . . . . . . .105

5.3 Variance

107

5.4 Covariance

113

5.5 Exercices

118

6 Loi des grands nombres

129

6.1 Deux modes de convergence

129

6.2 Loi faible des grands nombres

131

6.3 Estimation d"une proportion inconnue

132

6.4 Convergence presque sûre des fréquences

134

6.5 Discussion

138

6.6 Exercices

145

7 Approximation gaussienne

151

7.1 La courbe en cloche

151

7.2 Étude graphique

155

7.3 Le théorème de De Moivre-Laplace

159

7.4 Preuve du théorème de De Moivre-Laplace

162

7.4.1 Évaluation asymptotique deb(k,n,p). . . . . . . . . .1 63

7.4.2 Sommes de Riemann

168

7.5 Vitesse de convergence

171

7.6 Exercices

174

8 Variables aléatoires réelles

181

8.1 Sortie du cadre discret

181

8.2 Notion de variable aléatoire réelle

185

8.3 Variables à densité

188

8.3.1 Densité

188

8.3.2 Moments des variables à densité

192
ii

8.4 Lois à densité classiques. . . . . . . . . . . . . . . . . . . . . 193

8.4.1 Lois uniformes

193

8.4.2 Lois exponentielles

195

8.4.3 Lois gaussiennes

198

8.5 Exercices

201

A Ensembles et dénombrements

205

A.1 Généralités

205

A.2 Ensembles finis

207
iii iv

Introduction

Issu du cours de Probabilités en DEUG MASS et MIAS, ce document s"adresse à un public varié. Les étudiants de DEUG pourront y trouver une rédaction détaillée de toutes les questions abordées en cours. Quelques déve- loppements vont au-delà du strict programme et sont susceptibles d"intéresser des lecteurs curieux ou plus avancés. Les outils mathématiques utilisés restent néanmoins strictement dans le cadre du DEUG.

Ce premier tome

1est consacré à ce que l"on appelle lesprobabilités dis-

crètes. Par rapport aux rudiments de calcul des probabilités enseignés au lycée, l"innovation est la prise en compte de l"infini. Cette notion s"introduit très naturellement en calcul des probabilités, par exemple dès qu"il s"agit de modéliser des temps d"attente. On ne peut pas étudier avec un espaceΩde cardinal fini une expérience aléatoire aussi simple que : " on lance un dé jusqu"à la première obtention d"un six ». Nous nous posons donc la question de la définition et de l"étude des probabilités sur desuniversΩinfinis. Il est possible au niveau du DEUG de faire une théorie assez rigoureuse si l"on veut bien faire l"impasse sur les problèmes de construction (ou d"existence) de tels espaces probabilisés infinis capables de modéliser correctement les expériences aléatoires envisagées. Le principal outil mathématique utilisé est celui desséries. Il permet une étude classique assez complète des variables aléatoires discrètes. Cette étude débouche sur deux grands théorèmes de convergence de la théorie des probabilités : la loi des grands nombres et la convergence vers une loi gaussi- enne qui sont discutés dans des cas simples dans les deux derniers chapitres. Nous avons choisi de donner autant que possible des démonstrations de ces théorèmes dans ces cas particuliers. Ces démonstrations sont instructives en elles-mêmes et peuvent être considérées comme une introduction au cours de Licence. Une autre particularité de ce document est la discussion sur les questions de vitesse de convergence à propos des approximations (par une loi de Poisson ou par une loi de Gauss). Trop souvent on trouve à ce sujet dans

la littérature des recettes qui, données sans justification, ressemblent plus à1. Y en aura-t-il un deuxième?

v de la cuisine

2qu"à des mathématiques.

Chaque chapitre contient une section d"exercices qui suit autant que pos- sible l"ordre d"exposition du cours

3. Certains sont des applications directes

du cours ou des sujets d"examen ou de D.S., d"autres des approfondisse- ments. Leur niveau de difficulté n"a volontairement pas été indiqué a priori. De même, on ne trouvera pas dans cette introduction de plan de lecture détaillé pour chaque DEUG. De telles indications pourront être données en cours ou en TD, mais je n"ai pas souhaité cloisonner a priori une curiosité qui, pour un scientifique, est tout le contraire d"un vilain défaut... Je remercie tous les collègues qui m"ont aidé directement ou indirectement à rédiger ce polycopié et plus particulièrement MauriceChamontin, Sylvie Roellyet Marie-ClaudeVianoavec qui j"ai fait équipe en DEUG MASS et MIAS. Il va de soi qu"ils ne portent aucune responsabilité pour les quelques débordements auxquels j"ai pu me laisser aller ni pour les quelques fautes 4 que l"on ne manquera pas de trouver dans cette première édition

5(septembre

1996).

Comme prévu ci-dessus, le deuxième tome n"a toujours pas été écrit et un certain nombre d"erreurs ont été détectées dans la première édition et corrigées dans la deuxième

6(septembre 1997). Je remercie tous ceux qui m"en

ont signalé et plus particulièrement les étudiants de l"amphithéâtre de DEUG MASS 96-97 pour leur vigilance. Merci également à MichelLifshitspour ses précisions sur l"historique du théorème de De Moivre-Laplace, à Youri Davydovet MyriamFradonpour d"utiles discussions ainsi qu"à tous les chargés de TD de probabilités en DEUG MIAS pour leur participation active. Last but not least, merci à DanielFlipoqui avec patience et disponibilité m"a fait bénéficier de ses compétences d"expert dans le traitement de texte scientifique L

ATEX2ε.

Les troisième et quatrième éditions de ce polycopié (septembre 1998 et

1999), ont bénéficié des amendements et corrections suggérés par Myriam

Fradon, JeanneDevolderet AnnePhilippe. C"est pour moi un plaisir de les en remercier ici. La cinquième édition (septembre 2000) de ce polycopié s"est enrichie

(alourdie?) d"un chapitre sur les variables aléatoires réelles qui s"est sub-2. Il y a souvent de bonnes raisons cachées derrière une recette qui peut paraître arbi-

traire...

3. Ces exercices ne se substituent pas aux séances de TD et à leurs fiches d"exercices

mieux adaptées à chacun des publics concernés.

4. Dont le nombre suit une loi de Poisson.

5. Remerciements anticipés à tout lecteur qui m"aidera à réduire le paramètre de ladite

loi pour la prochaine édition.

6. Qui ne prétend pas en être exempte, voir exercice

5.7 p ourune mo délisation. vi stitué à la promesse électorale d"un deuxième tome. Le titre a changé en conséquence. La sixième édition (septembre 2001) comprend quelques exercices sup- plémentaires. La septième est inchangée, sauf la correction d"un quarantaine (sic) de fautes de frappe ou d"orthographe. La plupart m"ont été signalées par DenisBitouzéde l"Université du Littoral que je remercie pour sa lecture attentive. Je saisis l"occasion de cette huitième édition (septembree 2003) pour remercier également AzzouzDermoune, JeanneDevolder, Daniel Flipo, MyriamFradon, MargueriteZani, GwénaëlleCastellanet Lau- renceMarsallepour la diffusion de ce polycopié à leurs étudiants des DEUG MIAS et MASS et de la préparation au C.A.P.E.S. et à l"Agrégation

Interne.

Villeneuve d"Ascq, septembre 2003.

Ce polycopié est disponible sur Internet, au format PDF, à l"adresse URL suivante : http://math.univ-lille1.fr/~suquet/ vii viii

Chapitre 1

Espaces Probabilisés

1.1 Introduction

La théorie des probabilités fournit des modèles mathématiques permet- tant l"étude d"expériences dont le résultat ne peut être prévu avec une totale certitude. En voici quelques exemples :ExpérienceRésultat observable

Lancer d"un déUn entierk? {1,...,6}Prélèvement denobjets en sortieNombre d"objets défectueux

d"une chaîne de productiondans l"échantillon

Questionnaire à 100 questionsSuiteωde 100 réponsesbinairesω? {oui,non}100Lancer d"une pièce jusqu"à laUn entierk?N: le tempspremière obtention de piled"attente du premier succès

Mise en service d"une ampouleDurée de vieT?RLancer d"une fléchette sur une ciblePoint d"impact Mouvement d"un grain de pollenUne fonction continue : dans un liquidela trajectoire Mélange de deux gazRépartition spatiale de deux types de molécules Bien que le résultat précis de chacune de ces expériences soit imprévisi- ble, l"observation et l"intuition nous amènent à penser que ces phénomènes obéissent à certaines lois. Par exemple si on jette 6000 fois le dé, on s"attend à ce que le nombre d"apparitions de la face " 3 » soitvoisinde 1000. Si on met en service 100 ampoules, leurs durées de vie observées serontconcentrées autour d"une certaine valeur moyenne. 1

Chapitre 1. Espaces Probabilisés

La théorie des probabilités permet de donner un sens précis à ces con- sidérations un peu vagues. Lastatistiquepermet de confronter les modèles probabilistes avec la réalité observée afin de les valider ou de les invalider. Par exemple si quelqu"un a 60 bonnes réponses sur 100 au questionnaire, est-il légitime de considérer qu"il a " mieux fait » que le hasard? Sur lesnobjets prélevés en sortie de chaîne,ksont défectueux. Peut-on en déduire quelque chose sur la qualité de la production globale?

1.2 Événements

La théorie moderne des probabilités utilise le langage des ensembles pour modéliser une expérience aléatoire. Nous noteronsΩun ensemble dont les éléments représentent tous les résultats possibles ouévénements élémentaires d"une expérience aléatoire donnée. Lesévénements(ou événements composés) seront représentés par des parties (sous-ensembles) deΩ. Il n"est pas toujours facile de trouver un ensembleΩpermettant de modéliser l"expérience aléatoire. Voici une règle pratique pour y arriver : les événements élémentaires sont ceux qui contiennentl"information maxi- malequ"il est possible d"obtenir de l"expérience. Par exemple si on jette un dé, l"événementA: " obtention d"un chiffre pair » n"est pas élémentaire. Il est composé des trois événements élémentaires 2, 4, 6 :A={2,4,6}. IciΩ ={1,2,3,4,5,6}. De même si on lance trois fois une pièce de mon- naie, les événements élémentaires sont des triplets comme (p,f,p) indiquant le résultat précis de chacun des trois lancers. IciΩ ={f,p}3. L"événe- mentB" obtention de pile au deuxième des trois lancers » est composé :

B={(f,p,f);(f,p,p);(p,p,f);(p,p,p)}.

Avec ce mode de représentation, les opérations logiques sur les événe-quotesdbs_dbs29.pdfusesText_35
[PDF] Exercices MS Project - Chamilo

[PDF] musculation: exercices

[PDF] FICHE D EXERCICES : NATURES ET FONCTIONS

[PDF] Distinguer les noms, les adjectifs, les verbes

[PDF] EXERCICES : Chapitre « Tangente et nombre dérivé »

[PDF] Les nombres en anglais

[PDF] Chimie - Chimie organique - L 'UNF3S en 2015, c 'est

[PDF] i203-i210 - exercices sur les complexes - sbeccompanyfr

[PDF] Exercices de brevet de mathématiques corrigés, classés par notions

[PDF] TD de Nutrition et Métabolisme Bactériens Introduction Générale sur

[PDF] SECOND DEGRE #8211 ACTIVITES

[PDF] Bac S 2013 Asie CORRECTION © http://labolyceeorg EXERCICE I

[PDF] 2 Optique géométrique 2013-14

[PDF] Exercices d 'Optique

[PDF] PLANIFICATION et Ordonnancement