[PDF] MATH Tle D OK 2 DES LANGUES NATIONALES. ANNALES. MATHÉ





Previous PDF Next PDF



ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES. TERMINALE S. LYCEE LOUIS ARMAND. Année scolaire 1999/2000. Page 2. Annales du baccalauréat S 2000. 2. Lycée Louis Armand. Page 3 



Un journal pour les mathématiques spéciales: les Nouvelles

24 nov. 2014 Un journal pour les mathématiques spéciales: les Nouvelles annales de mathématiques (1842--1927). Bulletin de l'Union des Professeurs de ...



DIPLÔME NATIONAL DU BREVET SESSION 2021

MATHEMATIQUES. Série générale. Durée de l'épreuve : 2 h 00. 100 points. Dès que le sujet vous est remis assurez-vous qu'il est complet. Il comporte 8 pages 



Number Theory in the Nouvelles annales de mathématiques (1842

13 avr. 2021 Abstract. — The Nouvelles annales de mathématiques were a French mathemat- ical journal published between 1842 and 1927



Mathématiques Annales 2003

Ces annales ont pu être menées à bien grâce aux contributions de personnes PREMIERE EPREUVE (8 POINTS). MAITRISE DE CONNAISSANCES MATHEMATIQUES. EXERCICE 1.



Lemergence de la presse en mathematiques au 19e siecle

Les historiens des mathématiques s'accordent à considérer les Annales de mathématiques pures et appliquées. (1810-1832) de Gergonne fondées par Joseph Diaz 



annales mathematiques 3

ANNALES. MATHEMATIQUES. 3 ème. Page 3. 2. Auteurs : - Dieudonné KOURAOGO IES EPREUVE DE MATHEMATIQUES (Ier tour). (Calculatrices non autorisées). Durée : 2 ...



DIPLÔME NATIONAL DU BREVET SESSION 2022

MATHEMATIQUES. Série générale. Durée de l'épreuve : 2 h 00. 100 points. Dès que le sujet vous est remis assurez-vous qu'il est complet. Il comporte 7 pages 



Mathématiques Annales 2004

Mathématiques. Annales 2004. Sujets et corrigés. Page 3. Annales 2004 COPIRELEM. Page 3. Ces annales ont été rédigées par : Jean Claude Aubertin (IUFM de 



MATH Tle D OK 2

ANNALES. MATHÉMATIQUES. TERMINALE D. Page 3. 2. AUTEURS : Dieudonné KOURAOGO. IES mathématiques. Cette annale comporte trois parties : Première partie : ...



MATH Tle D OK 2

DES LANGUES NATIONALES. ANNALES. MATHÉMATIQUES. TERMINALE D La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans.



Math 3 A5

Unité – Progrès – Justice. MINISTERE DE L'EDUCATION NATIONALE. DE L'ALPHABETISATION ET DE LA PROMOTION. DES LANGUES NATIONALES. ANNALES. MATHEMATIQUES.



ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES. TERMINALE S Annales du baccalauréat S 2000 ... Calculer l'espérance mathématique de en fonction de puis déterminer.



Mise en page 1

Annales. CM2. MATHEMATIQUES. G. ?Rappel de cours. ? Epreuves. ? Corrigés. Interdit de vendre DES LANGUES NATIONALES. ANNALES. MATHÉMATIQUES. CM2.



Annales de mathématiques Licence 1ère année (1er semestre 2003

Annales de mathématiques. Licence 1ère année. (1er semestre 2003-2004). 13 septembre 2004. Page 2. 2. Page 3. Table des matières. 1 Algèbre linéaire.



À MM. les abonnés des « Nouvelles annales de mathématiques »

Nouvelles annales de mathématiques 3e série tome 6. (1887)



NOUVELLES ANNALES DE MATHÉMATIQUES

Nouvelles annales de mathématiques 1913



Un journal pour les mathématiques spéciales : les Nouvelles

d'élèves et d'enseignants des classes préparatoires : les Nouvelles annales de mathématiques. Jusqu'en 1927 soit durant 85 ans



Mathématiques

20 avr. 2016 ANNALES DU CONCOURS ECRICOME PREPA 2015 : ÉPREUVE MATHÉMATIQUES ÉCONOMIQUE - PAGE 2. Les sujets et corrigés publiés ici sont la propriété ...



Mathématiques 6ème

d'enseignement. Le tableau –ci-dessous propose une organisation en ce qui concerne la classe de sixième. Mathématiques 6ème. 13. Guide de l'enseignant 

1

BURKINA FASO

Unité - Progrès - Justice

MINISTERE

DE L'EDUCATION NATIONALE,

DE

L'ALPHABETISATION ET DE LA PROMOTION

DES

LANGUES NATIONALES

ANNALES

MATHÉMATIQUES

TERMINALE D

2

AUTEURS :

Dieudonné KOURAOGO IES

Victor T. BARRY IES

Jean Marc TIENDREBEOGO IES

Clément TRAORE IES

Bakary COMPAORE IES

Abdou KABORE CPES

Maquette et mise en page :

OUEDRAOGO Joseph

ISBN :

Tous droits réservés :

© Ministre de l'Éducation Nationale, de l'Alphabétisation

Et de la Promotion des Langues nationales

Edition :

Direction Générale de la Recherche en Éducation et de l'Innovation Pédagogique 3 4

AVANT-PROPOS

La présente annale destinée à la classe de terminale D a pour but d'aider le professeur dans

son enseignement et le candidat au baccalauréat D de se préparer à l'épreuve de

mathématiques.

Cette annale comporte trois parties :

Première partie : résumé du cours par chapitre Deuxième partie : énoncés des épreuves du baccalauréat D Troisième partie : propositions de corrigés des épreuves. Les candidats ne tireront profit qu'en résolvant et trouvant par eux-mêmes les solutions sans

avoir recours aux corrigés. Les corrigés sont pour confirmer leurs justes réponses ou donner

d'autres pistes de résolution qui ne sont peut-être pas les leurs. Le succès résulte de l'effort et

de la méthode. Nous vous souhaitons du plaisir dans vos activités mathématiques et attendons vos critiques et suggestions pour des améliorations futures d'autres oeuvres.

Les auteurs

5 6

RAPPEL DE COURS

7

Chapitre : Les suites numériques

Objectifs :

· Mettre en oeuvre les énoncés admis sur les limites des suites ; · Connaître les limites et les comportements asymptotiques comparés des suites numériques.

1. Généralités sur les suites numériques

a) Définition

On appelle suite numérique, toute application

définie de ℕ (ou d'un sous ensemble de ℕ) vers ℝ. On la note ()∈ℕ (ou ()∈). b) Modes de détermination d'une suite

Une suite numérique peut être définie :

Soit par une formule explicite qui permet de calculer les termes en fonction de .

Exemples :

- Soit ()∈ℕ la suite définie par = 2 - 3. - Soit ()∈ℕ ∗ la suite définie par = Soit par la donnée d'un terme quelconque (en général son 1er terme) et d'une relation qui lie deux termes consécutifs (permettant de calculer un terme à partir du terme qui le précède).

Exemples :

- Soit ()∈ℕ la suite définie par = 3 - Soit ()∈ℕ ∗ la suite définie par = 4 + 5 , c) Sens de variation d'une suite Soit ()∈ℕ une suite numérique.

· Si pour tout

(resp. strictement croissante).

· Si pour tout

décroissante (resp. strictement décroissante).

· Si pour tout

∈ ℕ, = alors la suite ()∈ℕ est dite constante. d) Comparaisons sur les suites

Soient

()∈ℕ et ()∈ℕ deux suites numériques et 8 Si pour tout , ≥ (resp. > ) on dit que la suite () est supérieure () (resp. () est strictement supérieure à ()). Si pour tout () (resp. () est strictement inférieure à ()). On dit que la suite () est majorée s'il existe un réel ' tel que pour tout On dit que la suite () est minorée s'il existe un réel ( tel que pour tout Si la suite () est la fois minorée et majorée, on dit qu'elle bornée. Remarque : Une suite positive (resp. négative) est minorée par 0 (resp. majorée par 0).

2. Suites arithmétiques et suites géométriques

a) Suites arithmétiques

· Une suite

()∈ℕ est dite arithmétique s'il existe un réel ) tel que tout

Le réel

) s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : Si le 1er terme est alors pour tout - 1)). Pour tous entier et , (

· Soit

()∈ℕ est une suite arithmétique de raison ). Si ) > 0 alors la suite () est croissante. Si ) < 0 alors la suite () est décroissante. Si ) = 0 alors la suite () est constante.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

2. Si le 1er terme est alors la somme / des

1er termes est :

2. Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : + 1) ×(-+ -) 2. 9 b) Suites géométriques

· Une suite

()∈ℕ est dite géométrique s'il existe un réel 2 tel que tout = 2.

Le réel

2 s'appelle la raison de la suite ()∈ℕ.

· Soit

()∈ℕ est une suite arithmétique de raison ) et de 1er terme . On a : = 2. Si le 1er terme est alors pour tout = 2(). Pour tous entier et , ( = -2(-).

· Soit

()∈ℕ est une suite arithmétique de raison ). Si 2 > 1 alors la suite () est croissante. Si 0 < 2 < 1 alors la suite () est décroissante. Si 2 = 1 alors la suite () est constante. Si 2 < 0, () est une suite alternée

· Soit

()∈ℕ est une suite arithmétique de raison 2 et de 1er terme . La somme / des

1er termes est : /= + + + ⋯+ .

/= ×1 - 2

1 - 2.

Si le 1er terme est alors la somme / des

1er termes est :

/= ×1 - 2

1 - 2.

Si le 1er terme est - alors la somme / des ( + 1) 1er termes est : /= -×1 - 2

1 - 2.

3. Convergence des suites numériques

a) Définition Soit ()∈ℕ une suite numérique. On dit que la suite () est convergent si elle admet une limite finie 3. On note lim→8= 3. On dit que la suite () est divergente si elle n'est pas convergente. On a lim→8= +∞ ou lim→8= -∞. b) Limite par comparaison Soit ()∈ℕ une suite numérique et S'il existe une suite () telle que pour tout , ≥ et lim→8= +∞ alors lim→8= +∞. 10 S'il existe un suite (:) telle que pour tout alors lim→8= -∞. S'il existe un réel 3 tel que pour tout lim→8:= lim→8= 3, alors lim→8= 3. Si pour tout Si pour tout c) Limite des suites monotones Soit ()∈ℕ une suite numérique. Si () est croissante et majorée alors () converge. Si () est décroissante et minorée alors () converge. Si () est monotone et bornée alors () converge. d) Convergence des suites arithmétiques et géométriques

· Convergence des suites arithmétiques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si ) = 0 alors la suite () est convergente et lim→8= . Si ) ≠ 0 alors la suite () est divergente et lim→8= +∞, ) > 0 lim →8= -∞, >? ) < 0

· Convergence des suites géométriques

Soit ()∈ℕ est une suite arithmétique de raison ) et de 1er terme . Si 2 = 1 alors la suite () est convergente et lim→8= Si |2| < 1 alors la suite () est convergente et lim→8= 0. Si 2 > 1 alors la suite () est divergente et lim→8= +∞, > 0 lim →8= -∞, >? < 0 e) Opérations sur les limites des suites Soit ()∈ℕ et ()∈ℕ deux suites numériques. Les propriétés sur les limites de la somme ( + ), du produit (× ) et du quotient @A BA), si ≠ 0; sont les mêmes que celles sur les limites des fonctions numériques. f) Limites des suites définies à l'aide d'une fonction

· Suite de type

= C( Soit C une fonction définie sur ℝ et () une suite définie par = C( Si C admet une limite en +∞ alors lim→8= limD→8C(E).

· Suite de type

= C() Soit C une fonction continue sur un intervalle de ℝ et () une suite numérique définie par = C().

Si la suite

() est convergente et de limite 3, alors 3 = C(3). 11

Chapitre : Courbes paramétrées

Objectifs :

· mettre en évidence et exploiter les périodicités et les symétries éventuelles, · dresser le tableau de variations des fonctions coordonnées x et y, · calculer les coordonnées (x'(t), y'(t)) du vecteur dérivé, · connaître l'interprétation cinématique du vecteur dérivé.

1. Notion de courbes paramétrées

a) Définition Le plan est rapporté à un repère orthonormal (O,F,GHIH) et I est un intervalle de ℝ. Soit

E et J deux fonctions de la variable réelle K.

A tout réel

K, on associe le point '(K) définie par le vecteur

L'GGGGGGH(K)= E(K)FH+ J(K)IH.

L'ensemble (

M) des points '( E;J) du plan tels que :

OE = E(K)

J = J(K), K ∈ est appelée courbe paramétrée de paramètre K.

On note

'(K) ( E(K);J(K)) le point de paramètre K.

Le système

OE = E(K)

J = J(K) , K ∈ est la représentation paramétrique de la courbe (C) ou le système d'équations paramétrique de la courbe (C).

Exemples de représentations paramétriques

OE (K)= 2 - 3K J (K)= -4 + K, K ∈ ℝ PE (K)= Q RST J (K)= cosK, K ∈X-Y;YZ b) Propriétés des fonctions coordonnées et interprétation graphique Périodicité Soit (C) la courbe de représentation paramétrique : OE = E(K)

J = J(K),K ∈

Si E et J sont deux fonctions périodiques qui admettent le réel positif T pour période commune, alors la courbe (M) est obtenue complètement, en faisant varier K dans un intervalle d'amplitude T. 12 Parité

Dans un repère orthonormal (O,F,GHIH), on considère la courbe paramétrée (C) définie par :

'(K)OE = E(K)

J = J(K),K ∈ .

Lorsque les fonctions

E et J sont paires ou impaires sur I, les points '(K) et '(-K) ont des

positions relatives remarquables, et la courbe possède alors certaines propriétés de symétrie.

Tableau illustratif des propriétés de symétrie. Si

E(-K)=E(K)

J(-K)=-J(K)

E(-K)=-E(K)

J(-K)=J(K)

E(-K)=-E(K)

J(-K)=-J(K)

alors (]) est Symétrique par rapport à (^E). Symétrique par rapport à (^J). Symétrique par rapport à L.quotesdbs_dbs22.pdfusesText_28
[PDF] Recueil d 'annales en Mathématiques Terminale S - Bankexam

[PDF] 2014 - HEC Paris

[PDF] annales concours paes 2 semestre 2011-2012 - C2P1

[PDF] Annales d examen - BU Toulon

[PDF] Sujets psycho L1 juin 2013 - UFR Sciences Humaines - Université

[PDF] PSYCHOLOGIE

[PDF] Sujets psycho L2 juin 2013 - UFR Sciences Humaines - Université

[PDF] Temps et relativité restreinte 1 Enoncé du Sujet - SMARTCOURS

[PDF] programme de l 'epreuve d 'histoire - Sciences Po

[PDF] Licence 1 - Introduction ? la sociologie Sujet de janvier 2016

[PDF] Baccalauréat STI2D et STL spécialité SPCL - UdPPC

[PDF] tage mage test d 'entraînement corrigé - Ecricome

[PDF] Annales

[PDF] Résultats du concours d 'admission en 2ème année de l - Inserm

[PDF] MECPT_07 Anneau sur cercle en rotationpdf