[PDF] Formulaire de physique-1.pdf 1ère loi de Kepler.


Formulaire de physique-1.pdf


Previous PDF Next PDF



Calculer une quantité de matière Calculer une quantité de matière

1 Rechercher la formule chimique de l'éthanol. 2 En déduire sa masse molaire. 3 Quelle est la masse volumique de l'éthanol ? 4 Calculer la quantité de matière 



RAPPELS DE CHIMIE ORGANIQUE DE 1ERE S RAPPELS DE CHIMIE ORGANIQUE DE 1ERE S

➢ La formule semi-développée : On ne fait plus apparaître les liaisons entre les atomes C N et O et l'atome H. Ex : C2H6O 





LES ALCANES

Ils ont des propriétés physiques et chimiques différentes. Voir ci-dessous. Formule brute noms des isomères température d'ébullition butane. -05.



Les grandeurs physiques et leurs unités. (à connaître par cœur) Il ne

mesure et elle s'exprime avec une unité. Les expressions littérales « formules reliant différentes grandeurs physiques » (à connaître et à savoir utiliser).



Exercices de physique-chimie Première Spécialité

1/ Déterminer `a l'aide de la classification périodique les formules des ions présents dans ce solide. 2/ En déduire la formule chimique de ce solide ionique. 3 



THEME: CHIMIE ORGANIQUE TITRE DE LA LEÇON: LE BENZÈNE

Page 6. 6. Situation d'évaluation. Au cours d'une séance de travaux pratiques le professeur de Physique Chimie de la classe de 1ère D du L.M.Y.A. verse 



Programme de physique-chimie de première générale

Le programme de physique-chimie de la classe de première s'inscrit dans la continuité de première que les élèves justifient la relation entre nom et formule ...



PHY-144 : Introduction à la physique du génie Chapitre 6

Exemple 6.3 : Calculez la vitesse angulaire de rotation de la Terre sur son axe en rad/s. On sait que la Terre fait un tour complet en 1 jour : -5. 1 tour 2π 



Formulaire de physique-1.pdf

Formules de physique 1ère loi. Si pas de force résultante MRU ou immobile. 2ème loi ... S (m2) b : coef. de dilatation superficielle (K-1) ;.



LES ALCANES

6. Modèle de Lewis : C. L'atome de carbone peut avoir 4 liaisons covalentes simples Les alcanes sont des hydrocarbures de formule brute CnH2n+2.



Chapitre 1 La quantité de matière la concentration molaire et le

Cette année on va aller encore plus loin en ajoutant des formules ! Je vais grandeur physique (car mesurable) qui s'exprime en mole de symbole « mol ».



Calculer une quantité de matière

1 Rechercher la formule chimique de l'éthanol. 2 En déduire sa masse molaire. 3 Quelle est la masse volumique de l'éthanol ? 4 Calculer la quantité de matière 



correction exercices Précis de Physique-Chimie chapitre1 à 4

à formuler sur le contenu ou la présentation du Précis de Eléments de correction des exercices du chapitre 6 : oxydoréduction : application à la ...



La mole Ce quil faut retenir La mole : Exercices dapplication niveau

V : volume de l'échantillon en mL. Les formules suivantes sont à connaître : m= n M. N= n NA où NA est le nombre d'Avogadro (NA = 602.1023 mol-1).



Rappel : les formules de chimie

La masse molaire moléculaire s'obtient en ajoutant les masses molaires T et la quantité de matière d'un gaz sont reliés par une formule applicable.



RAPPELS DE CHIMIE ORGANIQUE DE 1ERE S

? La formule semi-développée : On ne fait plus apparaître les liaisons entre les atomes C N et O et l'atome H. Ex : C2H6O 



Cours doptique géométrique – femto-physique.fr

L'optique géométrique s'intéresse au trajet qu'empreinte la lumière à formules du grandissement permettent d'obtenir deux lois équiva- lentes :.



22-Fascicule Physique chimie 1ère S IA PG-CDC Février 2020 (VF)

Fascicule de Sciences Physiques de Première S /IA Pikine-Guediawaye /CDC - 2018 Déterminer la formule brute d'un composé à partir des résultats de ...

.

Dossier de Physique

Véronique Bouquelle

Diffusé par la Maison des Sciences

Faculté

des

Sciences

Formules de physique

à lǯusage du secondaire

1

Formulaire de physique

j O·XVMJH GH O·HQVHLJQHPHQP VHŃRQGMLUH

Courants

alternatifs

Rapport de

ns,p : nbre de spires au prim./sec.

Us,p : tension au

prim./sec.

Is,p : intensité au

prim./sec.

Valeurs efficaces Ueff (V)

Ieff (A)

Ueff : tension efficace

(V)

Umax : tension

maximale (V)

Ieff : intensité

efficace (A)

Imax : intensité

maximale (A)

Ueff : tension efficace

(V)

Ieff : intensité

efficace (A)

Dynamique

a : coefficient de frottement (sans unité, compris entre 0 et 1)

N : force normale

(N)

Coefficients de

frottement statique et dynamique

Lois de Newton

1ère loi Si pas de force résultante, MRU ou

immobile.

2ème loi F (N) ܨൌ݉ܽ

m : masse du corps (kg) a : accélération (m/s2)

3ème loi

Action = Réaction ;

sens opposés ; agissent sur des corps différents

Impulsion p (kg.m/s) ݌ൌ݉ݒ

p : impulsion (kg.m/s) m : masse (kg) v : vitesse (m/s) 2

Collisions

inélastiques

FRQVHUYMPLRQ GH O·LPSXOVLRQ PMLV SMV GH

l·pQHUJLH ŃLQpPLTXH TXL VH PUMQVIRUPH HQ

XQH MXPUH IRUPH G·pQHUJLHB

Collisions élastiques FRQVHUYMPLRQ GH O·LPSXOVLRQ HP GH

O·pQHUJLH ŃLQpPLTXHB

Electricité

loi de Coulomb F (N) ܨൌ݇±௟ܳଵܳ kél : constante

électrique = ͳ

9.109 Nm2/C2 dans

O·MLU ; 0 : permittivité

électrique du vide

Q : charge (C)

d : distance entre les charges (m) champ électrique E (N/C ou V/m)

F : force à laquelle la

charge q est soumise (N) q : charge soumise au champ électrique (C)

Q ŃOMUJH j O·RULJLQH

du champ électrique (C) d : distance à la charge Q (m) potentiel électrique V (V) ܸൌ݇ ܳ

Q : charge créant le

potentiel (C) d : distance à la charge Q (m) avec la convention V =

0 j O·LQILQL

intensité I (A) ܫ

ݐ q : charge (C)

t : temps (s) tension ou différence de potentiel

U (V) ܷൌܲ

I : intensité (A)

ݍ W : travail (J)

q : charge (C) résistance 5 ă

U : tension (V)

I : intensité (A)

Nj : résistivité

dépendant du matériau (ăP

L : longueur du

conducteur (m)

6 ›52 : section du

conducteur (m2) 3

U : tension (V)

I : intensité (A)

R : résistance (ă

résistances en série ܴݐ݋ݐൌܴͳ൅ܴ-൅ܴ résistances en parallèle ͳ

1ère loi de Kirchhoff HQ XQ Q±XG σ courants entrants =

σ courants sortants

tensions en série ܷݐ݋ݐൌܷͳ൅ܷ-൅ܷ tensions en parallèle ܷݐ݋ݐൌܷͳൌܷ-ൌܷ intensités en série ܫݐ݋ݐൌܫͳൌܫ-ൌܫ intensités en parallèle ܫݐ݋ݐൌܫͳ൅ܫ-൅ܫ

ŃMSMŃLPp G·XQ

condensateur C (F) ܥൌܳ

Q ŃOMUJH GH O·XQH

des plaques (C)

U : tension entre les

plaques (V) pQHUJLH G·XQ condensateur chargé W (J) ܹ

Q ŃOMUJH GH O·XQH

des plaques (C)

U : tension entre les

plaques (V)

C : capacité du

condensateur (F) tension fournie par une pile U (V) ܷൌܧെݎܫ

U : tension fournie

par la pile (V)

E : tension

électromotrice de la

pile (V) r : résistance interne

GH OM SLOH Ÿ

I : intensité de

courant dans le circuit (A)

Energie,

thermodynamique

F : force (N)

d : distance sur

OMTXHOOH HOOH V·MSSOLTXH

(m)

Ĵ : angle entre le

déplacement et la force

Théorème de

O·pQHUJLH ŃLQpPLTXH

Le travail est égal à la variation

G·pQHUJLH ŃLQpPLTXH :

Ec,f : énergie cinétique

finale (J) 4

F : force (N) dont le

SRLQP G·MSSOLŃMPLRQ VH

déplace v : vitesse à laquelle

OH SRLQP G·MSSOLŃMPLRQ

de la force se déplace (m/s)

Ĵ : angle entre le

déplacement et la force

énergie cinétique Ec (J) ܿܧ

m : masse du corps (kg) v : vitesse du corps (m/s)

énergie potentielle

gravitationnelle Ep (J) ܧ m : masse du corps (kg) g : champ de pesanteur (m/s2 ou N/kg) h : hauteur (m) puissance P (W) ܲൌܧ

E : énergie (J)

t : intervalle de temps (s)

UHQGHPHQP G·XQH

4௛௔௨௧௘כ

4 PI VL ŃOMQJHPHQP G·pPMP

c : chaleur massique

J/(kg.°C)

m : masse de la substance (kg) : élévation de température (°C)

L : chaleur latente

(J/kg) p : pression (Pa)

V : volume (m3)

n : nombre de moles

R = 8,31 J.kg-1.°C-1 ;

cste des gaz parfaits théorie cinétique des gaz : énergie cinétique des

PROpŃXOHV G·XQ JM]

ECmoy (J) ܥܧ

k = 1,38.10-23 J/K; cste de Boltzmann

T : température (K)

nombre de molécules dans une mole = nbre

G·$YRJMGUR

NA NA = 6,02.1023 molécules/mole

5

énergie au repos E0 (J) ܧ-ൌ݉-ܿ

m0 : masse au repos (kg) c = 3.108 m/s ; vitesse de la lumière dans le vide

électron-volt 1 eV = 1,6.10-19 J

température absolue T (K) T = + 273,15 : température en °C a : coef. de dilatation linéaire (K-1)

L0 : longueur initiale

(m)

T : variation de

température (K) dilatation b : coef. de dilatation superficielle (K-1) ; b = 2a

V0 : volume initial

(m3)

T : variation de

température (K) c : coef. de dilatation volumique (K-1) ; c = 3a

V0 : volume initial

(m3)

T : variation de

température (K)

Fluides

Statique des

fluides masse volumique (kg/m3 ou g/cm3) ߩ

V : volume (m3)

densité d ݀ൌߩ corps : masse volumique du corps (kg/m3) eau : masse volumique

GH O·HMX 1000 NJCP3 =

1 g/cm3)

pression p (Pa) ݌ൌܨ

S : surface (m2)

1 atm = 1,013.105 Pa

1 mbar = 100 Pa

6 pression dans un fluide à une profondeur h p (Pa) ݌ൌ݌௘௫௧௘௥௡௘൅ߩ pexterne : pression sur le fluide (Pa) : masse volumique du fluide (kg/m3) g : champ de pesanteur (m/s2 ou N/kg) h : profondeur (m)

SRXVVpH G·$UŃOLPqGH FArchimède

(N)

Tout corps plongé dans un fluide subit

une poussée égale au poids du volume de fluide déplacé : ܣܨݎ݄ܿ݅݉°݀݁ൌߩܸ݃ : masse volumique du fluide (kg/m3) g : champ de pesanteur (m/s2 ou N/kg)

V : volume de fluide

déplacé (m3)

Si un corps flotte dans un fluide, son

SRLGV OM SRXVVpH G·$UŃOLPqGHB

principe de Pascal

Une pression externe appliquée à un

fluide se transmet à tout le fluide (dans une enceinte fermée). machine hydraulique ݌ൌ ܨ p : pression exercée sur le fluide (Pa)

F : force exercée

dans chaque cylindre (N)

S : section de chaque

cylindre (m2) y : hauteur de laquelle monte/descend le piston (m)

Dynamique des

fluides

équation de

continuité ܵͳݒͳൌܵ

S1 : section de la

ŃRQGXLPH j O·HQGURLP 1

(m2) v1 : vitesse du fluide à

O·HQGURLP 1 PCV

S2 : section de la

ŃRQGXLPH j O·HQGURLP 2

(m2) v2 : vitesse du fluide à

O·HQGURLP 2 PCV

7

équation de Bernoulli ݌ͳ൅ߩ

p1 : pression du fluide j O·HQGURLP 1 3M : masse volumique du fluide (kg/m3) g : champ de pesanteur (m/s2 ou N/kg) h1 : hauteur de

O·HQGURLP 1 P

v1 : vitesse du fluide à

O·HQGURLP 1 PCV

théorème de

Torricelli GpNLP G·XQ

OLTXLGH V·pŃRXOMQP

ORUV G·XQ UpŃLSLHQP

D (m3/s) ܦൌܵ

S : section de

O·RXYHUPXUH P2)

h OMXPHXU G·HMX au-dessus de

O·Ruverture (m)

Gravitation

Poids, force de

pesanteur G (N) ܩ m : masse du corps (kg) g : champ de pesanteur (m/s2 ou N/kg) )RUŃH G·MPPUMŃPLRQ gravitationnelle F (N) ܨ

ԭ = 6,67.10-11

Nm2/kg2 ; constante

universelle de gravitation m1 : masse du corps 1 (kg) m2 : masse du corps 2 (kg) d : distance entre les deux corps (m)

1ère loi de Kepler Trajectoire = ellipse

2ème loi de Kepler Aires égales en des temps égaux

YLPHVVH SOXV JUMQGH SUqV GH O·MVPUH

3ème loi de Kepler

Lien période - rayon

T : période (unité de

temps)

R : rayon orbital

moyen (unité de distance) ellipses : a : demi grand axe (m) rmin : dist. min. à

O·MVPUH P

rmax : dist. max. à

O·MVPUH P

8

Magnétisme

champ magnétique : perméabilité magnétique du matériau à

O·LQPpULHXU GX

solénoïde (Tm/A)

SRXU O·MLU 4›B10-7)

N : nbre de spires

L : longueur du

solénoïde (m)

I : intensité dans

les spires (A) force magnétique sur une charge en mouvement (force de

Lorentz)

Q : charge (C)

v : vitesse de laquotesdbs_dbs19.pdfusesText_25
[PDF] formule physique chimie 3eme

[PDF] formule physique chimie 3eme pdf

[PDF] formule physique terminale s

[PDF] formule pour calculer la taille de l'échantillon pdf

[PDF] formule pour calculer le chiffre d'affaire

[PDF] formule pour calculer le surplus du producteur

[PDF] formule pour calculer une masse

[PDF] formule prix psychologique bac pro commerce

[PDF] formule probabilité terminale st2s

[PDF] formule probabilité totale term es

[PDF] formule prorata tva france

[PDF] formule puissance dissipée

[PDF] formule puissance mécanique

[PDF] formule puissance thermique

[PDF] formule sensibilité