[PDF] Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016





Previous PDF Next PDF



Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016

20 juin 2016 Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016. EXERCICE 1 ... a pas plus de 6 % d'ampoules défectueuses dans sa production.



Les rayons X outil dinvestigation (Bac S - Antilles-Guyane - juin 2016)

(Bac S - Antilles-Guyane - juin 2016). Corrigé réalisé par B. Louchart professeur de Physique-Chimie. © http://b.louchart.free.fr.



Les acteurs de la mission Rosetta (Bac S - Antilles-Guyane

(Bac S - Antilles-Guyane - septembre 2016). Corrigé réalisé par B. Louchart professeur de Physique-Chimie. © http://b.louchart.free.fr.



Les caractéristiques dun home-cinéma (Bac S - Antilles-Guyane

(Bac S - Antilles-Guyane - juin 2016). Corrigé réalisé par B. Louchart professeur de Physique-Chimie. © http://b.louchart.free.fr. 1. L'installation sonore.



Sujet du bac S Physique-Chimie Obligatoire 2016 - Antilles-Guyane

Page 1 / 14. BACCALAURÉAT GÉNÉRAL. SESSION 2016. PHYSIQUE-CHIMIE. Série S EXERCICE I - LES RAYONS X OUTIL D'INVESTIGATION (6 points).



Sujet du bac S Physique-Chimie Obligatoire 2016 - Antilles-Guyane

BACCALAURÉAT GÉNÉRAL. SESSION 2016. PHYSIQUE-CHIMIE. Durée de. 16PYSCOAG3. Série S est autorisé EXERCICE I. LES ACTEURS DE LA MISSION ROSETTA (6 points).



Sujet du bac STI2D Physique-Chimie 2016 - Antilles-Guyane

1.2 À partir du document 2 de la page 3 préciser la masse de pétrole



Baccalauréat ES - 2016

21 avr. 2016 Baccalauréat ES–L Antilles–Guyane juin 2016. EXERCICE 1. 5 points. Commun à tous les candidats. Pour chacune des questions suivantes ...



Bilan Rconomique 2016 Guyane

3 juin 2017 es différentes analyses de ce bilan économique 2016 ont été rédigées par l'Insee ainsi ... de l'Insee aux Antilles-Guyane ... au Bac+2*.



Sujet du bac S Physique-Chimie Spécialité 2016 - Antilles-Guyane

21 juin 2016 BACCALAURÉAT GÉNÉRAL. SESSION 2016. PHYSIQUE-CHIMIE. Série S ... EXERCICE I - LES RAYONS X OUTIL D'INVESTIGATION (6 points).



Sujet du bac S Physique-Chimie Obligatoire 2016 - Antilles-Guyane

SESSION 2016 PHYSIQUE-CHIMIE Série S Durée de l’épreuve : 3 heures 30 Coefficient : 6 L’usage de la calculatrice est autorisé Ce sujet ne nécessite pas de feuille de papier millimétré Le sujet comporte trois exercices présentés sur 14 pages numérotées de 1/14 à 14/14 y compris celle-ci

?Corrigé dubaccalauréat S Antilles-Guyane20 juin 2016?

EXERCICE15 points

Commun à tousles candidats

Les valeurs approchées des résultatsseront données à10-4près.

Les partiesAetBsont indépendantes

Partie A

Un fabricant d"ampoules possède deux machines, notées A et B. La machine A fournit 65 % de la production, et la machine B fournit le reste. Certaines am- poules présentent un défaut de fabrication : — à la sortie de la machine A, 8 % des ampoules présentent un défaut; — à la sortie de la machine B, 5 % des ampoules présentent un défaut.

On définit les évènements suivants :

—A: "l"ampoule provient de la machine A»;

—B: "l"ampoule provient de la machine B»;

—D: "l"ampoule présente un défaut».

1.On prélève un ampoule au hasard parmi la production totale d"une journée.

a.Construire un arbre pondéré représentant la situation.

Solution:

A 0,65? D 0,08 D0,92 B 0,35? D 0,05 D0,95 Solution:AetBforment une partition de l"univers donc d"après les proba- bilités totales on a :

P?D?=P?D∩A?

+P?D∩B? =PA?D?

×P(A)+PB?D?

×P(B)=0,598+0,3325

P?D? =0,9305

c.L"ampoule tirée est sans défaut.Calculer la probabilité qu"elle provienne de la machine A.

Solution:On cherchePD(A)

PD(A)=P?

D∩A?

P?D? =0,5980,9305=11781861≈0,6427

2.On prélève 10 ampoules au hasard parmi la production d"une journée à la sortie

de la machine A. La taille du stock permet de considérer les épreuves comme in- dépendantes et d"assimiler les tirages à tirages avec remise. Calculer la probabilité d"obtenir au moins 9 ampoules sans défaut. quedeuxissues:l"ampouleestsansdéfautouelle présenteundéfautdontlapro- babilité de succès estp=P? D? =0,92. SoitXla variable aléatoire comptant le nombre d"ampoules sans défaut alors

X?→B(10 ; 0,92)

Oncherche

Partie B

1.On rappelle que siTsuit une loi exponentielle de paramètreλ(λétant un réel

strictement positif) alors pour tout réel positifa,P(T?a)=a 0

λe-λxdx.

a.Montrer queP(T?a)=e-λa.

Solution:

P(T?a)=1-P(T?a)=1-a

0

λe-λxdx=1-?

-e-λx?a 0 =1-?? -e-λa? (-1)? 1-?

1-e-λa?

=e-λa b.Montrer que siTsuit une loi exponentielle alors pour tous les réels positifst etaon a P

T?t(T?t+a)=P(T?a).

Solution:

PT?t(T?t+a)=P?

PT?t(T?t+a)=P(T?a)

2.Dans cette partie, la durée de vie en heures d"une ampoule sans défaut est une

variable aléatoireTqui suit la loi exponentielle d"espérance 10000. a.Déterminer la valeur exacte du paramètreλde cette loi. Solution:L"espérance de la loi exponentielle de paramètreλest1λ

On a donc1

λ=10000??λ=10-4

b.Calculer la probabilitéP(T?5000).

Solution:

Page 2

c.Sachantqu"uneampoulesansdéfautadéjàfonctionnépendant7000 heures, calculer la probabilité que sa durée de vie totale dépasse 12000 heures. Solution:On cherchePT?7000(T?12000)=PT?7000(T?7000+5000)

D"aprèslaquestion1.b.onadonc

PT?7000(T?12000)=P(T?5000)≈0,6065

Partie C

L"entreprisea cherché à améliorer la qualité de sa production etaffirmequ"il n"y apasplusde6% d"ampoulesdéfectueusesdanssaproduction.Uneassociation de consommateurs réalise un test sur un échantillon et obtient 71 ampoules défectueuses sur 1000.

1.Dans le cas où il y aurait exactement 6 % d"ampoules défectueuses, déterminer un

défectueuses sur un échantillon aléatoire de taille 1000. Solution:La proportionp=0,06 et la taillen=1000 de l"échantillon vérifient : n?30 ,np=60?5 etn(1-p)=940?5 On peut donc bâtir l"intervalle de fluctuation asymptotiqueau seuil de 95 % I=? p-1,96? p(1-p)?n;p+1,96? p(1-p)?n?

On a ici

I=[0,0452 ; 0,0748]

2.A-t-on des raisons de remettre en cause l"affirmation de l"entreprise?

Solution:Ici, la fréquence observée d"ampoules défectueuses estf=0,071 et on af?I donc on n"a pas de raison de remettre en cause l"affirmation de l"entreprise

EXERCICE23 points

Commun à tousles candidats

On munit le plan complexe d"un repère orthonormé direct?

O ;-→u,-→v?

On noteCl"ensemble des pointsMdu plan d"affixeztels que|z-2|=1.

1.Justifier queCest un cercle, dont on précisera le centre et le rayon.

Solution:SoitB(2) alors|z-2|=1??BM=1

Cest donc le cercle de centreB(2) et de rayon 1.

2.Soitaun nombre réel. On appelleDla droite d"équationy=ax.

Déterminer le nombre de points d"intersection entreCetDen fonction des va- leurs du réela.

Solution:Soitz=x+iy?M(z)?C

M(z)?D???|z-2|=1

z=x+iax???|(x-2)+iax|=1 z=x+iax

Δ=16-12(1+a2)=4-12a2

Page 3

Δ>0??a2<13??-?

3 3On en déduit que :

— sia??

3 3? 3

3;+∞?

alorsCetDn"ont aucun point commun

— sia= -?

3

3ou sia=?

3

3alorsCetDont un seul point d"intersection. Les

deux droitesDsont les tangentes àCpassant par O

— sia??

3 3;? 3 3? alorsCetDont deux points communs distincts

EXERCICE37 points

Commun à tousles candidats

Partie A

On considère la fonctionfdéfinie pour tout réelxparf(x)=xe1-x2.

1.Calculer la limite de la fonctionfen+∞.

Indication : on pourra utiliserque pour tout réel x différent de0, f(x)=e x×x2ex2.

Solution:

?x?=0 ,f(x)=ex×x2ex2 or lim x→+∞x 2 ex2= 0 car limx→+∞e x2x2=+∞. De plus limx→+∞ex=0

Donc par produit,

limx→+∞f(x) = 0

2. a.On admet quefest dérivable surRet on notef?sa dérivée.

Démontrer que pour tout réelx,

f ?(x)=?1-2x2?e1-x2. v(x)=1-x2=? ?u?(x)=1 v ?(x)=-2x ?x?R,f?(x)=(1-2x2)e1-x2 b.En déduire le tableau de variations de la fonctionf. on en déduit le tableau suivant :

Page 4

x-∞-? 2 2? 2

2+∞

f ?(x)-0+0- f(x)0 2e 2? 2e 2 0 On remarque quefest impaire donc limx→-∞f(x) = 0

Partie B

On considère la fonctiongdéfinie pour tout réelxparg(x)=e1-x. Sur le graphique ci-dessous, on a tracé dans un repère les courbes représenta- tivesCfetCgrespectivement des fonctionsfetg.

0,5 1,0 1,5 2,0 2,5 3,0-0,5-1,0-1,5-2,0-2,5

-0,5 -1,0 -1,50,5

1,01,52,02,5

Cf Cg Le but de cette partie est d"étudier la position relative de ces deux courbes.

1.Après observation du graphique, quelle conjecture peut-onémettre?

Solution:Il semblerait queCfsoit toujours en dessous deCg

2.Justifier que, pour tout réelxappartenantà ]-∞; 0],f(x)

Solution:SurR, e1-x>0 et e1-x2>0

On en déduit que sur ]-∞; 0] ,f(x)?0 etg(x)>0

On a donc bien

?x?]-∞; 0] ,f(x)Page 5

3.Dans cette question, on se place dans l"intervalle ]0 ;+∞[.

On pose, pour tout réelxstrictement positif,Φ(x)=lnx-x2+x. a.Montrer que, pour tout réelxstrictement positif, f(x)?g(x) équivaut àΦ(x)?0.

Solution:

f(x)?g(x)??xe1-x2?e1-x six>0 alors cette inéquation est équivalente à ln? xe1-x2? ?ln?e1-x?car la fonction ln est croissante sur ]0 ;+∞[ ln? xe1-x2? ?ln?e1-x???ln(x)+ln? e1-x2? ?ln?e1-x???ln(x)+1-x2?

1-x??ln(x)-x2+x?0

Finalement

six>0,f(x)?g(x) équivaut àΦ(x)?0 On admet pour la suite quef(x)=g(x) équivaut àΦ(x)=0. b.On admet que la fonctionΦest dérivable sur ]0 ;+∞[. Dresser le tableau de variation de la fonctionΦ. (Les limites en 0 et+∞ne sont pas attendues.)

Solution:

or sur ]0 ;+∞[ ,2x+1 x>0 doncΦ?(x) est du signe de (1-x) on en déduit le tableau x01+∞quotesdbs_dbs49.pdfusesText_49
[PDF] bac s antilles guyane juin 2015 maths

[PDF] bac s antilles guyane session de remplacement 09/2013

[PDF] bac s asie 2013 maths corrigé

[PDF] bac s asie 2014 physique

[PDF] bac s asie 2016 maths

[PDF] bac s asie 2016 physique corrigé

[PDF] bac s asie juin 2013 physique

[PDF] bac s centre etranger 2014 physique

[PDF] bac s coefficient

[PDF] bac s débouchés

[PDF] bac s histoire 2016

[PDF] bac s histoire geo 2010

[PDF] bac s histoire geo 2014

[PDF] bac s horaires 2017

[PDF] bac s juin 2014 métropole physique