[PDF] [PDF] FONCTION EXPONENTIELLE - maths et tiques





Previous PDF Next PDF



FONCTION EXPONENTIELLE

1) Relation fonctionnelle. Théorème : Pour tous réels x et y on a : Remarque : Cette formule permet de transformer une somme en produit et réciproquement.



TD 1 Intégrales généralisées

16 sept. 2016 converge et vaut 0. Solution : 1) Convergence. La fonction f(x) = ²1 ln x.



Équations différentielles

Indication pour l'exercice 2 ?. Une telle fonction f est solution d'une équation différentielle y +y = c. Indication pour l'exercice 3 ?. 1. x est solution 



formulaire.pdf

Logarithme et Exponentielle : eln x = ln(ex) = x ln 1 = 0 ln(ab) R`egles de dérivation. Exemples f(x) f?(x) f(x) f?(x) k. 0 x. 1. (u + v)? = u? + v?.



Premier exercice

centre O et de rayon 1 est : (C) une droite un cercle passant par O. 3. La dérivée d'ordre n de la fonction donnée par f(x) ln(x 1).



Fiche exercices (avec corrigés) - Equations différentielles

Réponse : 1. L'équation est y/(x) - 4 y(x)=3: a(x) = -4 et f(x)=3 



Corrigé du TD no 9

D'autre part on constate que f(0) = 1 donc 1 est à la fois un majorant et une valeur de la fonction f. Par conséquent



Bac Blanc no 1 corrigé

2 févr. 2012 On considère la fonction f définie sur [0 ; +?[ par f (x) = 4 ex +1 . On note (C ) sa courbe représentative dans un repère orthonormé (O;? ; ) ...



Espérance dune variable aléatoire

Calculs d'espérances de variables aléatoires discrètes. 1° Commençons par une v.a. X de loi uniforme sur {x1



Corrigé du TD no 11

J. Gillibert. Corrigé du TD no 11. Exercice 1. Soient f et g deux fonctions continues R ? R. On suppose que : ?x ? Q f(x) = g(x). Montrer que f = g.



[PDF] FONCTION EXPONENTIELLE - maths et tiques

1) Relation fonctionnelle Théorème : Pour tous réels x et y on a : Remarque : Cette formule permet de transformer une somme en produit et réciproquement



[PDF] FONCTIONS EXPONENTIELLES (Partie 2) - maths et tiques

Définition : Cette fonction est la fonction exponentielle de base e notée exp telle que pour tout réel x on a Le réel e est environ égal à 2718 Remarques 



[PDF] formulairepdf

x?+? ex/xn = +? lim x?+? ln(x)/xn = 0 Dérivées Fonctions usuelles Fonctions usuelles R`egles de dérivation Exemples f(x) f?(x) f(x) f?(x) k 0 x 1



[PDF] FONCTION EXPONENTIELLE

Cette fonction f est définie par : f(x) = a × exp(kx) pour tout x ? IR Exercice 01 On considère un partage de l'intervalle [0 ; 1] en n intervalles de 



[PDF] de la 1`ere S `a la TS Chapitre 4 : Études de fonctions Exercice n?1

Exercice n?2: Soit la fonction définie sur R ? {1} par f(x) = x2 + x + 1 x ? 1 On note (Cf ) sa courbe représentative dans un rep`ere orthonormé 1



[PDF] FONCTION EXPONENTIELLE 1 Définition de la fonction « exp

une fonction y(x) et un nombre fini de ses dérivées successives du type F(y y?y?? y(n))=0 où F est une fonction de plusieurs variables (ici n+1)



[PDF] Corrigé du TD no 11

Réponse : La fonction f : x ?? x2(cos x)5 + x sin x + 1 est continue sur R De plus on calcule que f(0) = 1 et que f(?)=1 ? ?2 Comme 1 ? ?2 est négatif 



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

– une fonction affine f : x ?? ax + b est partout dérivable et f (x0) = a pour tout x0 Voici deux exemples bien connus Exemples a) Soit n ? 1 un entier 



[PDF] Les fonctions exponentielles Exercices

Exercice 1 Simplifier les expressions suivantes : • A = e3 × e4 • B = e-5 e2 • C = e5x+7 × e-x-3 e2x+3 • D = 1 e-1 • E = e2 × e-4 • F = (e-5)2



[PDF] Feuille 9 Limites et continuité des fonctions

2 La fonction f(x) = sin(1/x) admet-elle une limite en 0? 3 Calculez limx!0

:
1

FONCTION EXPONENTIELLE

I. Définition

Théorème : Il existe une unique fonction f dérivable sur ℝ telle que et

Démonstration de l'unicité (exigible BAC) :

L'existence est admise

- Démontrons que f ne s'annule pas sur ℝ.

Soit la fonction h définie sur ℝ par .

Pour tout réel x, on a :

La fonction h est donc constante.

Comme , on a pour tout réel x :.

La fonction f ne peut donc pas s'annuler.

- Supposons qu'il existe une fonction g telle que et .

Comme f ne s'annule pas, on pose .

k est donc une fonction constante.

Or donc pour tout x : .

Et donc . L'unicité de f est donc vérifiée. Définition : On appelle fonction exponentielle l'unique fonction dérivable sur ℝ telle que et .

On note cette fonction exp.

Conséquence :

Avec la calculatrice, il est possible d'observer l'allure de la courbe représentative de la fonction exponentielle : f'=f f(0)=1 h(x)=f(x)f(-x) h'(x)=f'(x)f(-x)+f(x)-f'(-x) =f'(x)f(-x)-f(x)f'(-x) =f(x)f(-x)-f(x)f(-x) =0 h(0)=f(0)f(0)=1 f(x)f(-x)=1 g'=g g(0)=1 k(x)= g(x) f(x) k'(x)= g'(x)f(x)-g(x)f'(x) f(x) 2 g(x)f(x)-g(x)f(x) f(x) 2 =0 k(0)= g(0) f(0) 1 1 =1 k(x)=1 f(x)=g(x) f'=f f(0)=1 exp(0)=1 2 Remarque : On prouvera dans le paragraphe II. que la fonction exponentielle est croissante. Mais sa croissance est très rapide, ainsi exp(21) dépasse le milliard.

II. Etude de la fonction exponentielle

1) Dérivabilité

Propriété : La fonction exponentielle est continue et dérivable sur ℝ et Démonstration : Conséquence immédiate de sa définition

2) Variations

Propriété : La fonction exponentielle est strictement croissante sur ℝ. Démonstration : On a démontré dans le paragraphe I. que la fonction exponentielle ne s'annule jamais.

Or, par définition, donc pour tout x, .

Comme , la fonction exponentielle est strictement croissante.

3) Limites en l'infini

Propriété : et

- Propriété démontrée au paragraphe III. -

4) Courbe représentative

On dresse le tableau de variations de la fonction exponentielle : x 0 expx '=expx exp(0)=1 expx>0 expx '=expx>0 lim x→-∞ expx=0 lim x→+∞ expx=+∞ expx expx 3

III. Propriété de la fonction exponentielle

1) Relation fonctionnelle

Théorème : Pour tous réels x et y, on a : Remarque : Cette formule permet de transformer une somme en produit et réciproquement.

Démonstration :

Comme , on pose avec y un nombre réel.

Pour tout x, on a .

Donc la fonction f est constante.

Comme , on en déduit que .

Corollaires : Pour tous réels x et y, on a :

a) b) c) avec expx+y =expxexpy expx≠0 f(x)= exp(x+y) expx f'(x)= exp(x+y)expx-exp(x+y)expx expx 2 =0 f(0)= exp(y) exp(0) =expy exp(x+y) expx =expy exp-x 1 expx expx-y expx expy expnx =expx n n∈! 4

Démonstration :

a) b) c) La démonstration s'effectue par récurrence.

L'initialisation est triviale.

La démonstration de l'hérédité passe par la décomposition :

2) Le nombre e

Définition : L'image de 1 par la fonction exponentielle est notée e.

On a ainsi

Remarque : Avec la calculatrice, on peut obtenir une valeur approchée de e.

Notation nouvelle :

On note pour tout x réel,

Comme , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique .

Ses premières décimales sont :

e 2,7182818284 5904523536 0287471352 6624977572 4709369995

9574966967 6277240766 3035354759 4571382178 5251664274...

Le nombre e est également un nombre transcendant. On dit qu'un nombre est t ranscendant s'il n'e st solution d'aucune équation à coefficients entiers. Le nombre par exempl e, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation . Un tel nombre est dit "algébrique».

Le premier à s'intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard

Euler (1707 ; 1783), ci-dessus. C'est à lui que nous devons le nom de ce nombre. Non pas qu'il s'agisse de l'initiale de son nom ma is peut être car e est la première lettre du mot exponentiel. expxexp-x =expx-x =exp(0)=1 expx-y =expx+(-y) =expxexp-y =expx 1 expy expx expy expn+1 x =expnx+x =expnx expx=expx n expx=expx n+1 exp1=e expx=exp(x×1)=exp(1) x =e x expx=e x 2 x 2 =2 5 Dans " Introductio in Analysin infinitorum » publié en 1748, Euler explique que : Rappelons que par exemple 5! se l it "factorielle 5" et e st égal à 1 x 2 x 3 x 4 x 5. Par cette formule, il obtient une estimation de e avec 18 décimales exactes. Nous devons aussi à Euler la démonstration de l'irrationalité de e. Avec cette nouvelle notation, on peut ainsi résumer l'ensemble des propriétés de la fonction exponentielle : Propriétés : Pour tous réels x et y, on a : a) et b) et c) , , , , avec . d) et Remarque : On retrouve les propriétés des puissances.

Démonstration de d) (exigible BAC) :

- Soit la fonction g définie par . Pour x positif, car la fonction exponentielle est croissante.

Donc la fonction g est croissante sur .

On dresse ainsi le tableau de variations :

x 0

0 +

1

Comme , on a pour tout x, .

Et donc , soit .

D'après le théorème de comparaison des limites, on en déduit que car

Dériver une fonction exponentielle :

Vidéo https://youtu.be/XcMePHk6Ilk

e=1+ 1 1! 1 2! 1 3! e 0 =1 e 1 =e e xquotesdbs_dbs45.pdfusesText_45
[PDF] carnet de bord voyage scolaire rome

[PDF] dossier pédagogique voyage rome

[PDF] donner les valeurs de u(1) et u(4)

[PDF] calculer u1 u2 u3 u4

[PDF] carnet de voyage scolaire rome

[PDF] soit énumération

[PDF] soit virgule

[PDF] avec quelle espece chimique reagit le fer lorsqu'il rouille

[PDF] quand mettre soit ou soient

[PDF] soit adverbe

[PDF] soit conjonction

[PDF] soit soient académie française

[PDF] soit c'est ? dire

[PDF] soit quebec

[PDF] forces et faiblesses des usa