[PDF] Mathématiques première S 21 fév. 2017 La





Previous PDF Next PDF



Calcul vectoriel – Produit scalaire

À l'aide de la relation de Chasles écrivez le vecteur CMsous forme d'une somme Le produit scalaire de deux vecteurs peut s'exprimer à partir de.



TRANSLATION ET VECTEURS

6 sur 17. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Michel Chasles (Fr 1793-1880) : La relation n'est pas de lui



Les symboles somme et produit - Lycée dAdultes

27 fév. 2017 Propriété 1 : Relation de Chasles et linéarité : Relation de Chasles : ... Il s'agit de trouver une suite (vn) pour que un = vn+1 ? vn.



Cours 1ère S

6 ? et déterminons la mesure principale de cet angle orienté. Une relation de Chasles existe également pour les angles orientés.



VECTEURS DE LESPACE

plane : Relation de Chasles propriétés en rapport avec la colinéarité



A laide de la relation de Chasles écrire sous forme dun seul

2 août 2020 VECTEURS. EXERCICES 3B. EXERCICE 3B.1. A l'aide de la relation de Chasles écrire sous forme d'un seul vecteur… si c'est possible :.



Première S - Propriétés de calcul du produit scalaire - Projeté

où H est le projeté orthogonal du point B sur la droite (OA) . Page 6. Démonstration: . = En utilisant la relation de Chasles on obtient :.



Les vecteurs

On peut définir une addition des vecteurs qui a des propriétés semblables à celles de l'addition des nombres. 1- Relation de Chasles. Quels que soient les 



produit scalaire:Exercices corrigés

En utilisant la relation de Chasles on a : le(s) réel(s) tel que le triangle est rectangle en . ... Cours de 1ere S.



Mathématiques première S

21 fév. 2017 La somme de deux vecteurs est définie par la relation de chasles : ???. AC = ??. AB + ??. BC. Cette relation permet de décomposer.



[PDF] A laide de la relation de Chasles écrire sous forme dun - BDRP

2 août 2020 · VECTEURS EXERCICES 3B EXERCICE 3B 1 A l'aide de la relation de Chasles écrire sous forme d'un seul vecteur si c'est possible :



[PDF] TRANSLATION ET VECTEURS - maths et tiques

Michel Chasles (Fr 1793-1880) : La relation n'est pas de lui mais nommée ainsi en hommage à ses travaux sur les vecteurs Homme naïf on raconte qu'il fut 



[PDF] Somme de deux vecteurs – Relation de Chasles - Lycée dAdultes

2 juil 2018 · La relation de Chasles est un outil fondamental pour montrer que des vecteurs sont colinéaires par exemple Égalité de deux vecteurs – Milieu d' 



[PDF] Vecteurs (1ère partie)

Nous retrouvons une fois de plus la relation de Chasles : le chemin partant du point A pour arriver au point C pour ensuite remonter jusqu'au point B est le 



[PDF] Produit scalaire et relations métriques

Relation de Chasles et décomposition d'un vecteur Exercice X 1 1 1 Exprimer les vecteurs ! u ! v ! r et ! s en fonction des vecteurs AB



[PDF] 2A-ri-BAI-A-M-03AM - Plus de bonnes notes

Définition : La somme d'un vecteur et d'un vecteur est le vecteur tel que Propriété : Pour tout point et on a : ? La relation de Chasles : ; ? 



Relation de Chasles et Calculs vectoriels - Maths-coursfr

Différentes méthodes peuvent être utilisées pour simplifier des expressions vectorielles La plupart d'entre elles sont basées sur la relation de Chasles



Relation de Chasles

La relation de chasle est un cas particulier d'addition de vecteurs elle ne peut s'appliquer que lorsque l'extrémité du premier vecteur correspond au même 



Relation de Chasles - Vecteurs du plan : première Partie - Seconde

Relation de Chasles - Exercice 1 6 min 10 Question 1 Simpli?er les écritures suivantes en utilisant la relation de Chasles



Vecteurs et droites du plan : exercices de maths en 1ère en PDF

Vecteurs et droites du plan avec des exercices de maths en 1ère en PDF avec les vecteurs colinéaires la relation de Chasles

  • Comment trouver la relation de Chasles ?

    La relation de Chasles porte le nom d'un mathématicien fran?is du 19e si?le : Michel Chasles. En géométrie, elle permet de dire que, pour tout point A, B, C quelconque, l'égalité AB + BC = AC est vérifiée. Cela revient à dire que le vecteur AC est la somme des vecteurs AB et BC.
  • Comment utiliser la relation de Chasles ?

    La relation de chasle est un cas particulier d'addition de vecteurs, elle ne peut s'appliquer que lorsque l'extrémité du premier vecteur correspond au même point que l'origine du deuxième vecteur, dans ce cas le vecteur somme poss? la même origine que le premier vecteur et a la même extrémité que le second vecteur.
  • En mathématiques, plus précisément en géométrie vectorielle euclidienne, la relation de Chasles est une relation permettant d'additionner deux vecteurs dans un espace affine. Par extension, elle peut aussi être utilisée en géométrie plane, en intégration, en analyse complexe, etc.
DERNIÈRE IMPRESSION LE21 février 2017 à 10:56

Vecteurs et colinéarité.

Angles orientés et trigonométrie

Table des matières

1 Rappels sur les vecteurs2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Opérations sur les vecteurs. . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Colinéarité de deux vecteurs. . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Géométrie analytique. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Équation cartésienne d"une droite5

2.1 Vecteur directeur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Équation cartésienne d"une droite. . . . . . . . . . . . . . . . . . . . 6

2.3 Équation réduite d"une droite. . . . . . . . . . . . . . . . . . . . . . 7

3 Angles orientés7

3.1 Le radian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Mesure d"un angle orienté. . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Trigonométrie9

4.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Tableau des angles remarquables. . . . . . . . . . . . . . . . . . . . 9

4.3 Relations trigonométriques. . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Équations trigonométriques. . . . . . . . . . . . . . . . . . . . . . . 11

4.5 Lignes trigonométrie dans le cercle. . . . . . . . . . . . . . . . . . . 12

PAUL MILAN1PREMIÈRE S

TABLE DES MATIÈRES

1 Rappels sur les vecteurs

1.1 Définition

Définition 1 :Un vecteur?uou-→AB est défini par :

•une direction (la droite (AB)).

•un sens (de A vers B)

•Une longueur : la norme du vecteur

?u?ou AB Égalité de deux vecteurs-→AB=--→CD si et seulement si ABDC est un parallélogramme. ?A? B C? D

1.2 Opérations sur les vecteurs

1.2.1 Somme de deux vecteurs

La somme de deux vecteurs est définie par la relation de chasles : --→AC=-→AB+-→BC

Cette relation permet de décomposer

un vecteur.

On a l"inégalité triangulaire :

?u+?v????u?+??v? ?u? v u+?v A? B C

Construction de la somme de deux vec-

teurs de même origine.

On effectue un parallélogramme, afin

de reporter le deuxième vecteur per- mettant d"appliquer la relation de

Chasles.

--→OA+-→OB ?O? A B? C

Propriété 1 :La somme de deux vecteurs :

•Est commutative :?u+?v=?v+?u

•Est associative :(?u+?v) +?w=?u+ (?v+?w) =?u+?v+?w •Possède un élélment neutre?0 :?u+?0=?u •tout vecteur possède un opposé-?u:--→AB=-→BA

PAUL MILAN2PREMIÈRE S

1. RAPPELS SUR LES VECTEURS

1.2.2 Multiplication d"un vecteur par un scalaire

Lorsqu"on multiplie un vecteur par un

réelk, appelé scalaire, le vecteur ainsi formék?uest tel que :

•Sa longueur est multiplié par|k|

•Sik>0 son sens est inchangé

•Sik<0 son sens est inversé.

•Sik=0 on a : 0?u=?0

3

2-→AB

-2-→ABB A Propriété 2 :Bilinéarité. La multiplication par un scalaire est distributive par rapport à l"addition de deux vecteurs ou la somme de deux réels.

•k(?u+?v) =k?u+k?v•(k+k?)?u=k?u+k??v

1.3 Colinéarité de deux vecteurs

Définition 2 :On dit que deux vecteurs?uet?vsont colinéaires, si et seulement si, il existe un réelktel que :?v=k?u Remarque :Le vecteur nul?0 est colinéaire à tout vecteur car :?0=0?u Propriété 3 :La colinéarité permet de montrer le parallélisme et l"alignement. -→AB et--→CD colinéaires?(AB)//(CD) -→AB et--→AC colinéaires?A, B, C alignés

Exemple :Voir figure ci-contre :

Soit ABC un triangle, E, I et F tels que :

AE=1

3-→BC ,-→CI=23-→CB et

AF=1

3--→AC .

Démontrer que I, E et F sont alignés

A B CE I F Exprimons-→EI et-→EF en fonction de-→AB .

•-→CI=2

3-→CB donc-→BI=13-→BC .

On en déduit que

-→AE=-→BI donc que AEIB est un parallélogramme. On a alors :-→EI=-→AB

PAUL MILAN3PREMIÈRE S

TABLE DES MATIÈRES

•De plus :-→EF=-→EA+-→AF=13-→CB+13--→AC=13(--→AC+-→CB) =13-→AB

On en déduit alors :

-→EF=1

3-→EI . Les vecteurs-→EF et-→EF sont colinéaires et donc

les points E, F et I sont alignés.

1.4 Géométrie analytique

Propriété 4 :Mis à part les calculs de distance qui exige un repère orthonormé, les formules suivantes sont valable dans tout repère. •Soit deux points A(xA;yA)et B(xB;yB), les coordonnées du vecteur-→AB vérifient :-→AB=?xB-xA;yB-yA? •Soit deux points A(xA;yA)et B(xB;yB), les coordonnées du milieu I du seg- ment [AB] vérifient :

I=?xB+xA

2;yB+yA2?

•On appelle déterminant de deux vecteurs?u(x;y)et?v(x?;y?), le nombre : det(?u,?v) =????x x? y y =xy?-x?y •Deux vecteurs sont colinéaires si et seulement si, leur déterminant est égale à 0 uet?vcolinéaires?det(?u,?v) =0 •Dans un repère orthonormal, la norme d"un vecteur?uet la distance entre les points A(xA;yA)et B(xB;yB)vérifient : ?u||=? x2+y2et AB=?(xB-xA)2+ (yB-yA)2 Exemples :Dans un repère orthonormé(O,?ı,??)

1) Soit A(1; 4) et B(-5; 2). Calculer les coordonnées de-→AB de I =m[AB] et la

longueur AB -→AB= (-5-1 ; 2-4) = (-6 ;-2)et I =?1-5

2;4+22?

= (-2 ; 3) AB = (-6)2+ (-2)2=⎷40=2⎷10

2) On donne

?u(2 ; 3)et?v(3 ; 4). Les vecteurs?uet?vsont-ils colinéaires? det(?u;?v) =????2 33 4???? =8-9=-1. Comme det(?u;?v)?=0 les vecteurs ne sont pas colinéaires.

Dans un repère quelconque

ABCD est un parallélogramme. M, N, Q sont tels que : --→DM=4

5--→DA ,--→AN=34-→AB ,--→CQ=23--→CD

PAUL MILAN4PREMIÈRE S

2. ÉQUATION CARTÉSIENNE D"UNE DROITE

La parallèle à (MQ) menée par N coupe BC en P. Déterminer le coefficientkde colinéarité tel que-→BP=k--→AD .

Faisons une figure, en prenant comme

repère(A;-→AB ,--→AD): D"après l"énoncé les coordonnées de M,

N et Q sont :

M 0;1 5? , N?34;0? , Q?13;1?

P est sur (BC), son abscisse est 1.

A B CD ?M N? Q

P? ? ?

De plus commekest tel que :-→BP=k--→AD , son ordonnée vautk.

Les coordonnées de P sont : P(1;k)

Comme (NP)//(MQ), le déterminant de

--→MQ et--→NP est nul, on a :

3-0 1-34

1-1

5k-0???????

314
4 =0 k

3-15=0?k3=15?k=35

2 Équation cartésienne d"une droite

2.1 Vecteur directeur

Définition 3 :Soit une droiteddéfinie par deux points A et B. Un vecteur directeur ?ude la droitedest le vecteur-→AB . Remarque :Le vecteur?un"est pas unique, car 2 points quelconques de la droite définissent un vecteur directeur. Si ?uet?vsont deux vecteurs directeurs de la droited, alors les vecteurs?uet?vsont colinéaires. On a donc det(?u,?v) =0. Exemple :Soit la droite (AB) définie par : A(3 ;-5)et B(2 ; 3)

Le vecteur

-→u=-→AB est un vecteur directeur de la droite (AB), on alors : u=(2-3 ; 3-(-5))= (-1 ; 8) Théorème 1 :Une droite est entièrement définie si l"on connaît un point A et une vecteur directeur ?u. Démonstration :La démonstration est immédiate car à partir du point A et du vecteur directeur ?u, on peut déterminer un autre point B tel que :?u=-→AB

PAUL MILAN5PREMIÈRE S

TABLE DES MATIÈRES

2.2 Équation cartésienne d"une droite

Théorème 2 :Toute droiteddu plan peut être déterminée par une équation de la formeax+by+c=0, avecaetbnon tous les deux nuls. Une telle équation est appeléeéquation cartésiennede la droited. Réciproquement une équation du typeax+by+c=0 définie une droite de vecteur directeur ?u(-b;a) Démonstration :Soit la droitedpassant par le point A(xA;yA)et de vecteur directeur ?u(-b;a). Soit un point quelconque M(x;y)de la droited. On a alors--→AM et?ucolinéaires. Leur déterminant est alors nul. On a :--→AM= (x-xA;y-yA), donc : det(--→AM ,?u) =0?????x-xA-b y-yAa???? =0? a(x-xA) +b(y-yA) =0?ax+by-(axA+byA) =0

On posec=-(axA+byA), on a donc :ax+by+c=0

Réciproquement :Soitl"équationax+by+c=0.Deuxcaspeuventseprésenter •a=0 oub=0, on obtient respectivementy=-cbetx=-caqui sont respectivement une droite horizontale et une droite verticale. •Sia?=0 etb?=0 on peut déterminer deux points de cette équation en pre- nant respectivementx=0 ety=0. On obtient alors les points A? 0 ;-c b? et B? -c a; 0? on obtient alors le vecteur directeur-→AB=? -ca;cb? . Vérifions que ce vecteur -→AB est colinéaire au vecteur?u(-b;a)quotesdbs_dbs45.pdfusesText_45
[PDF] donner son numéro de sécurité sociale sur internet

[PDF] l'appel de l'ange epub gratuit

[PDF] démonstration relation de chasles

[PDF] l'appel de l'ange pdf ekladata

[PDF] guillaume musso pdf demain

[PDF] somme des angles d'un polygone régulier

[PDF] somme des angles d'un pentagone régulier

[PDF] somme des angles d'un pentagone convexe

[PDF] somme des angles d'un polygone non croisé

[PDF] somme des angles intérieurs d'un dodécagone

[PDF] cours de communication en français gratuit pdf

[PDF] somme des angles d'un polygone ? 5 côtés

[PDF] somme des angles d'un decagone

[PDF] somme des angles exterieur d'un pentagone

[PDF] exercice de français 5ème gratuit ? imprimer