[PDF] Les symboles somme et produit - Lycée dAdultes





Previous PDF Next PDF



Sommes et produits

Exemple. Le calcul de la somme géométrique donné plus haut faisait aussi intervenir une somme télescopique. Exemple. Soit r ? R et u



Chapitre IV : Calculs algébriques I La somme ? et le produit ?

est la suite des entiers naturels impairs. Proposition I.5 (somme et produit télescopique) ... Or le premier terme est une somme télescopique. Donc.



Les symboles somme et produit - Lycée dAdultes

27 févr. 2017 LE SYMBOLE SOMME r. 1.3 Sommes télescopiques. Théorème 1 : Sommes télescopiques. Soit une suite (an) une suite de nombres réels ou complexes ...



Sommes produits

https://www.normalesup.org/~glafon/carnot10/recurrence.pdf



Convergence des séries

pour tout n ? N la somme partielle d'indice n associée à la suite (un) : Lorsqu'on reconnaît une série télescopique



Sommes et produits

On dit qu'on a une somme télescopique Schématiquement on peut retenir la formule suivante pour la somme des termes d'une suite arithmétique :.



Séries

16 mars 2020 2.2 Séries télescopiques . ... Comme





Séries

Réciproquement si on veut étudier une suite (ak)k?0 on peut utiliser le résultat suivant : Proposition 3. Une somme télescopique est une série de la forme.



Feuille dexercices n?8 : corrigé

13 déc. 2011 On reconnait une somme télescopique dans la somme partielle : ... Comme un tend vers 0 la suite vn diverge vers ?? quand n tend vers +?



Feuille dexercices n?21 : corrigé

5 juin 2014 Rien d'évident ici mais on sait que la suite (Fn) est récurrente linéaire d'ordre 2



[PDF] Sommes produits récurrence - Normale Sup

18 sept 2010 · Nous allons donc la présenter sur un exemple Exemple : La somme télescopique consiste à constater que la différence de deux sommes ayant



[PDF] Sommes et produits

On dit qu'on a une somme télescopique Schématiquement on peut retenir la formule suivante pour la somme des termes d'une suite arithmétique :



[PDF] Chapitre IV : Calculs algébriques I La somme ? et le produit ?

Exemple 12 : Calculer la somme des nombres impairs de 1 à 99 en utilisant une suite arithmétique Soient (un)n?N une suite de réels ou de complexes et q ? K



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Exemples : Les sommes télescopiques sont une méthode très efficace pour calcu- ler la somme des termes d'une suite (un) Il s'agit de trouver 



[PDF] Sommes et produits

Le calcul de la somme géométrique donné plus haut faisait aussi intervenir une somme télescopique Exemple Soit r ? R et u la suite définie par u0 ? R 



[PDF] Somme téléscopique - Zeste de Savoir

Somme téléscopique 8 mars 2022 cas fini de la somme il suffit de prendre le nombre de termes et de le diviser par le produit du



[PDF] Sommes et produits - MP Dumont

On appelle somme télescopique toute somme du type suivant En français la somme de termes consécutifs d'une suite arithmétique est égal au produit de la 



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

La suite (Sn) s'appelle aussi la suite des sommes partielles Exemple 1 Fixons q ? Une somme télescopique est une série de la forme



[PDF] Devoir Maison n?3

On considère donc la suite (Sn) définie pour n ? 2 par Sn = 1 × 2+2 × 3 + ··· + (n ? 1) × n On reconnaîtra ensuite une somme télescopique



[PDF] Calculs de sommes et de produits finis

21 sept 2022 · La somme u0 + u1 + + un des n + 1 premiers termes de la suite (uk) On parle dans ce cas de sommes téléscopiques a Illustration

  • Comment calculer la somme d'une série telescopique ?

    D'une manière générale, b?k=a(f(k+1)?f(k))=f(b+1)?f(a), tous les autres termes s'étant "télescopés" mutuellement dans la somme.
  • Comment calculer la somme dans les suites ?

    La somme des termes consécutifs d'une suite arithmétique est la moyenne du premier et du dernier terme (donc leur somme divisée par 2), multipliée par le nombre de termes.
  • Comment Ecrire la somme d'une suite ?

    En règle générale, on utilise la première version si �� < 1 et la seconde si �� > 1 . Si �� = 1 , tous les termes de la suite géométrique sont identiques, donc il suffit de multiplier le premier terme par le nombre de termes pour trouver la somme : �� = �� × �� ? .
  • Lorsqu'une expression comporte plusieurs opérations, on peut se demander s'il s'agit d'une somme ou d'un produit. C'est une somme car : on commence le calcul par la multiplication, elle est prioritaire : 3 × 4 = 12 ; on effectue l'addition : 2 + 12 = 14.
DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑ k=1k2+3n∑ k=1k+n∑ k=11=3S2(n) +3S1(n) +n

On en déduit que :

3S2(n)+3S1(n)+n= (n+1)3-1?3S2(n) =?(n+1)3-1-3S1(n)-n??

S 2=1 3? (n+1)3-3n(n+1)2-(n+1)? =2(n+1)3-3n(n+1)-2(n+1)6 (n+1)(2n2+4n+2-3n-2)

6=(n+1)(2n2+n)6=n(n+1)(2n+1)6

PAUL MILAN5VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

•S3(n), on utilise la sommen∑

k=1[(k+1)4-k4] = (n+1)4-1 n∑ k=1[(k+1)4-k4] =n∑ k=1(k4+4k3+6k2+4k+1-k4) =n∑ k=1(4k3+6k2+4k+1) =4n∑ k=1k3+6n∑ k=1k2+4n∑ k=1k+n∑ k=11=4S3(n) +6S2(n) +4S1(n)+n

On en déduit que :

4S3(n) +6S2(n) +4S1(n) +n= (n+1)4-1?

4S2(n) = (n+1)4-1-6S2(n)-4S1(n)-n

= (n+1)4-n(n+1)(2n+1)-2n(n+1)-(n+1) = (n+1)? (n+1)3-n(2n+1)-2n-1? = (n+1)(n3+3n2+3n+1-2n2-n-2n-1) = (n+1)(n3+n2) =n2(n+1)2

Théorème 3 :Somme géométrique

Pour tous naturelspetntels quep?n

et pour tout réel ou complexextel quex?=1, on a : n∑ k=pxk=xp×1-xn+1-p

1-x=premier terme×1-xNbre de termes1-x

Démonstration :PosonsSn=n∑

k=pxk.

•On utilise une somme télescopique :

S n-xSn=n∑ k=pxk-n∑ k=pxk+1=n∑ k=p(xk-xk+1) =xp-xn+1 •On factorise :Sn(1-x) =xp(1-xn+1-p)x?=1?Sn=xp×1-xn+1-p1-x

Exemple :S=n∑

k=32k=23×1-2n-2

1-2=23(2n-2-1) =2n+1-8

Théorème 4 :Factorisation standard

Pour tout naturelnet pour tous réels ou complexesaetb, on a : a n-bn= (a-b) n-1∑ k=0an-k-1bk= (a-b)(an-1+an-2b+···+abn-2+bn-1)

PAUL MILAN6VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Démonstration :On pose :Sn=n-1∑

k=0an-k-1bk, on a alors :

•aSn=n-1∑

k=0an-kbk=an+n-1∑ k=1an-kbkk→k+1=an+n-2∑ k=0an-k-1bk+1

•bSn=n-1∑

k=0an-k-1bk+1=n-2∑ k=0an-k-1bk+1+bn k=0an-k-1bk+1-n-2∑ k=0an-k-1bk+1-bn=an-bn

1.5 Sommes doubles

Définition 2 :Lorsqu"on somme sur deux indices, on parle de somme double. Soit(aij)une suite double de nombres réels ou complexes et soit deux entiers naturelsnetp, on note :

1?i?n1?j?pa

quotesdbs_dbs45.pdfusesText_45
[PDF] somme telescopique convergence

[PDF] somme théologique iii

[PDF] saint thomas d aquin wikipedia

[PDF] somme théologique saint thomas pdf

[PDF] le chat et les pigeons pdf

[PDF] obligation d être prof principal

[PDF] décret no 93-55 du 15 janvier 1993

[PDF] bo n°5 du 4 février 1993

[PDF] je ne vois dans tout animal qu'une machine ingénieuse these

[PDF] explication de texte philosophie rousseau discours sur l origine

[PDF] différents aspects du travail

[PDF] thomas d'aquin somme théologique explication

[PDF] prudence saint thomas d aquin

[PDF] angle nul définition

[PDF] sommeil et sante montigny les cormeilles