[PDF] TRIGONOMÉTRIE Propriété : La tangente en





Previous PDF Next PDF



Chapitre 8 – Relations trigonométriques dans le triangle rectangle

Dans un triangle rectangle on appelle tangente d'un angle aigu le rapport Dans le triangle ABC rectangle en C



COMMENT DEMONTRER……………………

Propriété : Si un triangle est rectangle alors il est inscrit dans le On sait que (D) est la tangente en A au cercle C de centre O. Propriété :Si une ...



TRIANGLES RECTANGLES ET CERCLES

PR1. Propriété réciproque relative cercle circonscrit à un triangle rectangle. Si un triangle est défini par le diamètre d'un cercle et un autre point du.



CARACTERISATION DU TRIANGLE RECTANGLE

2) Caractérisation du triangle rectangle l'aide de la propriété de Pythagore théorème de Pythagore Sur la figure ci-contre (d) est la tangente en A.



Chapitre 3 – triangle rectangle et perpendicularite : on vous dit tout !

Dans le triangle ABC rectangle en B on cherche la longueur du côté opposé à l'angle. ?. On doit donc appliquer d'abord la propriété : les trois angles de tous 



Exemple : Méthode : Remarques : M5 : Avec les symétries M6 : Avec

la définition du rectangle ou bien d?après une propriété des triangles isocèles). On appelle tangente au cercle en M



Modèle mathématique. Ne pas hésiter à consulter le fichier daide

( L'hypoténuse étant toujours plus grande que le côté adjacent le sinus d'un angle aigu dans un triangle rectangle ne dépasse pas 1). • Tangente de l'angle 



Modèle mathématique. Ne pas hésiter à consulter le fichier daide

Rq : Dans ce même triangle rectangle on a sin ABC = AC. BC. Propriété : Le sinus d'un angle aigu est toujours compris entre 0 et 1. III. Tangente d'un 



TRIGONOMÉTRIE

Propriété : La tangente en M au cercle C est la perpendiculaire au 2) Lien avec la trigonométrie vue dans le triangle rectangle : Rappel :.



8 Trigonométrie dans le triangle rectangle

8 Trigonométrie dans le triangle rectangle Définition : (Fonctions trigonométriques) Soit le triangle rectangle ci-dessous on définit les trois rapports suivants : Le sinus de l’angle ? : sin opp hyp ?= Le cosinus de l’angle ? : cos adj hyp ?= La tangente de l’angle ? : tan opp adj ?= Dans un triangle rectangle la



Triangles rectangles : PYTHAGORE et TRIGONOMETRIE

• Dans un triangle si le carré d'un côté est égal à la somme des carrés des deux autres côtés alors le triangle est rectangle • Soit ABC un triangle Si BC² = AB² + AC² alors le triangle est rectangle et [BC] est l'hypoténuse le triangle est rectangle en A Propriété contraposée de Pythagore admise



Searches related to propriété tangente triangle rectangle PDF

Calculer la longueur d'un côté d'un triangle rectangle connaissant un cosinus ou un sinus ou une tangente III PRÉREQUIS Cosinus d'un angle aigu ; théorème de Pythagore ; complémentarité des angles aigus d'un triangle rectangle ; racines carrées IV ADÉQUATION DU LIVRE CIAM AU PROGRAMME SÉNÉGALAIS

Qu'est-ce que la tangente d'un triangle rectangle?

Définition du rapport tangente. ??Dans un triangle rectangle, la tangente d'un angle, noté tan? est le rapport de la mesure du côté opposé à l'angle ? et du côté adjacent à ce même angle. La tangente est un des trois rapports trigonométriques que l'on retrouve dans un triangle rectangle.

Comment calculer la tangente d'un triangle ?

Il est important que votre calculatrice soit en mode "degrés", ce qui est signalé sur l'écran par un "D" ou "Deg". Dans ce cas, le résultat du calcul est . Dans un triangle ABC rectangle en B, la tangente de l'angle vaut : Si dans le triangle ABC ci-dessus, on a en plus : BC = 4 cm et AB = 5 cm .

Quelle est la propriété d'un triangle rectangle ?

Dans tout triangle rectangle, les deux angles aigus sont complémentaires, c'est à dire que leur somme est égale à 90°. Selon notre exemple, nous avons dans le triangle ABC rectangle en B : . Cette propriété se généralise aux autres fonctions trigonométriques.

Comment calculer la longueur d'un triangle rectangle?

Les formules du cosinus, du sinus et de la tangente servent à : - calculer la longueur d'un côté d'un triangle rectangle lorsque l'on connaît (la mesure d') un angle et la longueur d'un côté

1 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr TRIGONOMÉTRIE I. Le cercle trigonométrique Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d'une montre. Définition : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, le cercle trigonométrique est le cercle de centre O et de rayon 1. II. Enroulement de la droite numérique 1) Tangente à un cercle Vient du latin " tangere » = toucher C'est une droite qui " touche » le cercle en un point et un seul. Vidéo https://youtu.be/O-5yCePDlKY Propriété : La tangente en M au cercle C est la perpendiculaire au rayon en ce point. 2) Définition de l'enroulement Dans un repère orthonormé

O;i ;j

, on considère le cercle trigonométrique et une droite (AC) tangente au cercle en A et orientée telle que

A;j

soit un repère de la droite. Si l'on " enroule » la droite autour du cercle, on associe à tout point N d'abscisse x de la droite orientée un unique point M du cercle. La longueur de l'arc

AM d est ainsi égale à la longueur AN. O C M

2 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 3) Correspondance entre abscisse et angle La longueur du cercle trigonométrique est égale à 2π. En effet, son rayon est 1 donc P = 2πR = 2π x 1 = 2π Après enroulement, le point N d'abscisse 2π sur la droite orientée se trouve donc en A sur le cercle. Cela correspond à un tour complet. Ainsi au nombre réel 2π (abscisse de N sur la droite orientée) on fait correspondre un angle de 360° (mesure de

AOM i

). Par proportionnalité, on obtient les correspondances suivantes : 4) Plusieurs abscisses pour un seul point A plusieurs points de la droite orientée on peut faire correspondre un même point du cercle. La droite orientée peut en effet s'enrouler plusieurs fois autour du cercle. Exemples : Ci-contre, les points N et P d'abscisses

3π 4 et -5π 4

correspondent tous les deux au point M. Abscisse du point N sur la droite orientée -2π -π

2 4 0 4 2

π 2π Angle

AOM i en degré -360° -180° -90° -45° 0° 45° 90° 180° 360°

3 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Les points de la droite orientée d'abscisses

2 et 3π 2

correspondent tous les deux au point M du cercle trigonométrique. Les points de la droite orientée d'abscisses π

et -π

correspondent tous les deux au point S du cercle trigonométrique. Les points de la droite orientée d'abscisses

3π 2 et 2

correspondent tous les deux au point T du cercle trigonométrique. Méthode : Déterminer un point défini par enroulement autour du cercle trigonométrique Vidéo https://youtu.be/Fk_YO30jXn8 Vidéo https://youtu.be/NpcTSa6pwk8 1) On enroule la droite orientée des réels sur le cercle trigonométrique de centre O. Déterminer le point M du cercle associé au réel

9π 4

dans cet enroulement. 2) Placer sur le cercle trigonométrique le point N correspondants à l'angle 480°. 1)

9π 4 8π 4 4 =2π+ 4

L'enroulement effectué correspond à un tour complet du disque (2π) suivi d'un huitième de tour (

4 ). Le point M se trouve donc sur le cercle trigonométrique tel que AOM i =45° . 2) 480° = 360° + 120° Le point N se trouve donc sur le cercle trigonométrique tel que AON i =120° . N

4 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Exercices conseillés Exercices conseillés p224 n°1 à 4 p228 n°29 à 31 p224 n°7 p226 n°1 à 4 p228 n°21 à 24 p226 n°7 ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 III. Sinus et cosinus d'un nombre réel 1) Définitions : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, on considère un cercle trigonométrique de centre O et de rayon 1. Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x. À ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M. Définitions : Le cosinus du nombre réel x est l'abscisse de M et on note cos x. Le sinus du nombre réel x est l'ordonnée de M et on note sin x. Exemple : On lit sur l'axe des abscisse : cos 60 = 0,5. TP conseillé TP conseillé TP TICE 1 p219 : Sinus et cosinus p221 TP1 : Sinus et cosinus ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014

5 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 2) Lien avec la trigonométrie vue dans le triangle rectangle : Rappel : Dans un triangle rectangle : Exercices conseillés En devoir Exercices conseillés En devoir p225 n°19 p226 n°21, 22*, 28* Activité1 p212 p227 n°14, 16, 17, 18, 20* p214 act 1 ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 Ainsi dans le triangle OHM rectangle en H, on a :

cosx= OH OM

Or OM =1, donc

OH=cosx

cos x est donc l'abscisse de M. On a également : sinx= MH OM OK OM =OK

sin x est donc l'ordonnée de M. 3) Valeurs particulières : Valeurs remarquables des fonctions sinus et cosinus à connaître : x 0° 30° 45° 60° 90° sinx

0 2 1 2 2 2 3

1 cosx

1 2 3 2 2 2 1 0

6 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Vidéo https://youtu.be/1l3SzSamBRk Exemple : A partir des valeurs particulières connues, trouver par symétrie le sinus et le cosinus de l'angle 210°. cos(210°) = -cos(30°) = -

3 2 sin(210°) = -sin(30°) = - 1 2 AOM i =150° et AON i =30°

Ainsi x = 30° ou x = 150°

7 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Exercices conseillés En devoir Exercices conseillés En devoir p225 n°12, 13 Ex 1, 2 (page8) Ex 3 (page8) p230 n°36, 37 Ex 1, 2 (page8) Ex 3 (page8) ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 4) Propriétés : Propriétés : Pour tout nombre réel x, on a : 1)

et

2) cos2 x + sin2 x = 1 3)

sin(-x)=-sinx et cos(-x)=cosx

Remarque : (sinx)2, par exemple, se note sin2x. Démonstrations : 1) Le cercle trigonométrique est de rayon 1 donc :

et

. 2) Dans le triangle OHM rectangle en H, le théorème de Pythagore permet d'établir que : cos2 x + sin2 x = OM2 = 1. 3) Les angles de mesures x et -x sont symétriques par rapport à l'axe des abscisses donc :

sin(-x)=-sinx et cos(-x)=cosx

. Méthode : Calculer le cosinus d'un angle connaissant son sinus Vidéo https://youtu.be/VfzFlEId56A Soit x un nombre réel. Calculer cos x sachant que sin x =

3 5 . On sait que cos2 x + sin2 x = 1, soit :

8 sur 8 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr cos2 x = 1 - sin2 x =

1- 3 5 2 16 25
. Soit encore : cos x = 4 5 ou cos x = - 4 5

. Exercices conseillés Exercices conseillés p225 n°15 p227 n°12 ODYSSÉE 2de HATIER Edition 2010 ODYSSÉE 2de HATIER Edition 2014 Exercice 1 Pour x compris entre 0° et 360°, résoudre les équations suivantes : a) sin x = -0,5 b) sin x = 1 c) sin x = -1 d) sin x = -22 Exercice 2 Pour x compris entre 0° et 360°, résoudre les équations suivantes : a) cos x = -1 b) cos x = -32 c) cos x = 2 d) cos x = 32 Exercice 3 Pour x compris entre 0° et 360°, résoudre les équations suivantes : a) cos x = 0,5 b) sin x = -32 c) cos x = -22 d) sin x = -1,1 Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs27.pdfusesText_33
[PDF] exemples d'activités apc

[PDF] animation autour du livre en bibliothèque

[PDF] animation autour du livre en maternelle

[PDF] animation autour du livre jeunesse

[PDF] activités autour du livre primaire

[PDF] activités en bibliothèque

[PDF] jeux autour du livre

[PDF] projet danimation autour du livre

[PDF] activité manuelle 3 ans facile

[PDF] activité 3 ans imprimer

[PDF] règle d'affaire informatique

[PDF] processus daffaires en grh

[PDF] qu'est ce qu'une pratique d'affaire ?

[PDF] pratiques d'affaires définition

[PDF] règle d'affaire définition