[PDF] 1 Acquisition dun signal TP n°4 : échantillonnage et





Previous PDF Next PDF



TP de physique-chimie Seconde

Modifier le programme pour tracer les histogrammes ainsi que calculer les moyennes et les écart-type de façon `a obtenir une figure de ce type.



Travaux Pratique

d'une part la relation entre le spectre en amplitude d'un signal périodique et Les objectifs fixés doivent permettre dans un second TP de synthétiser ...



TP 6 : Numérisation dun signal : échantillonnage et critère de

3– Toujours avec Latis Pro réaliser le spectre en amplitude du signal numérisé (voir à la fin de ce document pour une aide sur le logiciel). Après calcul



AR 16.1 Question 1

rappel car le nouveau programme de seconde n'a pas été mis en place pour ces élèves. Emission et propagation d'un signal sonore/vitesse de 



TP Filtrage numérique

TP Filtrage numérique. Capacités exigibles du programme : Analyse spectrale. — Mettre en évidence le phénomène de repliement du spectre provoqué par 



1 Acquisition dun signal

TP n°4 : échantillonnage et quantification. TP n°4 : Échantillonnage et quantification d'un signal 2 Caractérisation d'un signal à l'aide de son spectre.



TRAVAUX PRATIQUES DE PHYSIQUE ATOMIQUE ET

Dans une deuxième partie on étudiera l'absorption et la fluorescence d'un cristal Le but de ce TP est l'enregistrement puis l'analyse de ce spectre de ...



TRAVAUX PRATIQUES DE PHYSIQUE ATOMIQUE ET

Dans une deuxième partie on étudiera l'absorption et la fluorescence d'un cristal Le but de ce TP est l'enregistrement puis l'analyse de ce spectre de ...



SVT TB TP 1.4. - Photosynthèse - T. JEAN - BCPST Capes

(1 séance). - observer les chloroplastes isoler les pigments assimilateurs par chromatographie sur papier et caractériser le spectre d'absorption. - mettre en 



Programme Pédagogique National du DUT « Mesures Physiques

6 août 2016 ayant un large spectre de compétences dans les métiers de la physique de l'électronique



Thème : Ondes TP : Plein de couleurs 2nde

Lorsque le spectre présente des trous (des discontinuités) dans les couleurs on parle de spectre de raies Un rayon de lumière monochromatique est modélisé par une onde Lorsqu’on représente l’amplitude de cette onde en fonction de la position celle-ci est



2 TP P4 Spectres lumineux - Labo TP

TP P4 Spectres lumineux : Chapitre 2P Livre page 266 Objectifs : • Produire et exploiter des spectres d’émission obtenus à l’aide d’un système dispersif et d’un analyseur de spectre • Caractériser le spectre du rayonnement émis par un corps chaud • Exploiter un spectre de raies I Décomposer la lumière :



Searches related to tp spectre seconde nouveau programme PDF

« La lumière du laser est _____ et son spectre ne contient qu’une seule _____ » III – Spectre d’émission d’un corps chaud À partir de 300 °C les corps commencent à émettre de la lumière dans le rouge sombre La couleur de cette lumière change quand la température augmente comme son spectre

Quels sont les 2 spectres?

•? Les 2 spectres ne comportent des composantes qu’aux multiples entiers de la fréquence du signal, on parle de spectres de raies Spectre bilatéral d’amplitude Spectre bilatéral de phase

Comment interpréter un spectre?

Exemples d'interprétation de quelques spectres à partir de la comparaison des déplacements seuls H de CH 3 déblindés par O H de CH 2 déblindés par O et Cl Allure du spectre à 90 MHz 1 er exemple Cl-CH 2 -O-CH 3

Qu'est-ce que le spectre ?

Le spectre est la représentation graphique de l’onde sonore en fréquence (Amplitude en fonction des fréquences en abscisse). Là où pour le musicien il sera naturel de parler de hauteur de note, de mélodie et d’harmonie, le vocabulaire du mixeur son se fera à base de fréquences ou plus généralement de bandes de fréquence.

Comment fonctionne le nouveau système de gestion du spectre ?

Avec le nouveau Système de gestion du spectre, tous les types de services (p. ex., service à micro-ondes, service mobile terrestre, service de radiodiffusion) peuvent être saisis sous le même compte-client. À l’avenir, le personnel du Ministère rationalisera les comptes en consultation avec les clients.

MP1 - 2016 / 2017 TP n°4 : échantillonnage et quantificationTP n°4 : Échantillonnage et quantification d"un signalBut:Savoir visualiser et caractériser un signal à l"aide d"une carte d"acquisition ou d"un oscil-

loscope numérique qui transforme un signal analogique en un signal numérique échantillonné

et quantifié.

1 Acquisition d"un signal

A l"aide d"un oscilloscope, régler le GBF de manière à visualiser un signal sinusoïdal u(t) =U0cos(2π f0t+?)de fréquencef0= 1,00 kHz (soitT0= 1 ms) avec une amplitude U

0= 0,50 V.

1.1 Acquisition numérique à l"aide d"une carte d"acquisition

•En conservant le signal sur l"oscilloscope, brancher la sortie du GBF entre la masse et l"entréeEA0de la carte d"acquisition de l"ordinateur. •Lancer le logicielSynchronieet faire l"acquisition du signal à l"aide du menuExécuter, sans réglerles paramètres d"acquisition. Le signal visualisé sur l"écran est un signal

échantillonnéetquantifié, notéuaff.

Afin d"optimiser l"échantillonnage, quatre paramètres peuvent être ajustés (on pensera à

réactualiser l"acquisition à chaque modification des paramètres) :

1.Nombre de pointsN: il s"agit du nombre total de points d"échantillonnage. Augmen-

ter ce nombreNde points de 200 à 1000, dans le menuParamètres-Acquisition.

2.Période d"échantillonnageTe: c"est la durée entre deux échantillons. Toujours dans

le menuParamètres-Acquisition, réglerTeà 10μs. La durée totale d"acquisitionΔTs"en déduit automatiquementΔT=N Te= 10 ms (on observe une dizaine de périodes à l"écran). On notera que la période d"échantillonnageTe, lafréquence d"échantillonnageFeet la durée totale d"acquisition vérifient les relations : F e=1T e= 100kHz etΔT=NTe=NF et (ms) U(V)T 0

T = 1

e ΔT f e 0,5 - 0,5

!uaff(V) 3.Échelle verticale: Optimiser l"échelle verticale en utilisant le menuParamètres-Fenêtres.

4.Calibre vertical: Ce paramètre permet de régler lepas de quantificationou dediscré-

tisationsuivant l"échelle verticale. 1

MP1 - 2016 / 2017 TP n°4 : échantillonnage et quantificationPour voir son influence, réduire l"amplitude du signal d"un facteur 10, de sorte que le

signal ait une amplitude de 0,05 V. L"acquisition avec Synchronie fait alors apparaître un signal "en marches d"escaliers". •Mesurer le pas de quantification verticaleq. En déduire le nombre de bitsKde codage de la carte d"acquisition sachant que le signal peut alors prendre2Kvaleurs, échelonnées entre-Vmaxet+Vmax, ce qui conduit à une relation de la forme : q=2Vmax2 K-1 •Mesurerqet en déduireKavec les calibres-10V+10V,-5V+5V et finalement -1V+1V. Conclure.

2 Caractérisation d"un signal à l"aide de son spectre

2.1 Visualisation du spectre

Le logicielSynchroniepeut calculer la décomposition de n"importe quel signal en une somme

de sinusoïdes grâce à latransformée de Fourier discrète, accessible dans le menuTraitements

- Analyse de Fourier - EA0 - Calculer. Le réglage automatique étant mal programmé et ne

permettant pas de bien comprendre les difficultés d"échelles, ondécocherala caseEchelle opti-

misée. •Avec un signal sinusoïdal d"amplitude5V àf0= 1,0 kHz et des paramètresN= 1000 etFe= 100kHz (soitTe= 10μs) optimisés pour une bonne visualisation l"écran pour, observer le spectre en amplitude. On voit que l"échelle horizontale en fréquence n"est pas forcément bien adaptée : l"axe

horizontal s"arrête s"étend de 0 àFe/2et la raie àf0peut être située tout à gauche du graphique.

On peut alors :

•"Zoomer" la partie intéressante du graphique grâce à la "loupe". •Diminuer la fréquence d"échantillonnageFe. Par exemple, toujours avecN= 1000, mais F e= 10 kHz, on peut obtenir une échelle mieux adaptée (après avoir fermé la fenêtre de la FFT pour réinitialiser les échelles). Diminuer la fréquence d"échantillonnage à nombre de points constant a fait augmenter la durée totaleΔT=NF ed"acquisition. Le spectre est donc mieux visible mais au détriment de la visibilité du signal temporel.

2.2 Affichage correct du spectre

Les logiciels de calcul de spectre et les oscilloscopes numériques utilisent un algorithme de calcul du spectre nommé FFT (Fast Fourier Transform). Cet algorithme est très rapide, mais ne donne des résultats corrects que si les fréquences du signal sont des multiples de FeN . Par

exemple, pour un signal sinusoïdal de fréquencef0, le spectre ne sera correctement calculé que

si :f

0=kFeN

aveck?[[0,partie entière(N/2)]]2

MP1 - 2016 / 2017 TP n°4 : échantillonnage et quantificationOn se reportera au complément joint au TP pour en comprendre l"origine.

FeN est lequantum de fréquence(on peut aussi l"appelerrésolution en fréquence). On peut visualiser cette "limitation" d"affichage du spectre en procédant de la manière suivante : •Examiner l"influence d"une modification de la fréquencef0sur le spectre lorsque cette

dernière n"est pas un multiple de la résolution. Mesurer la hauteur du "pic" et conclure.résolution =10 Hz

f =5 kHz f (kHz) U(f) = 10 kHz f e

N = 1000

max = 1 kHz f 0 résolution =10 Hz f =5 kHz f (kHz) U(f) = 10 kHz f e

N = 1000

max = 1.002 kHz f 0 f modifiée 0 f multiple de la résolution 0 f NON multiple de la résolution 0 !Fe / N = 10 Hz Fe / N = 10 Hz Fe / N Fe / N 2.3 Critère de Shannon et repliement du spectre Le signal échantillonnéuaffpossède un spectre plus riche que celui du signal analogique u(t). En effet, le spectre deu(t)ne contient qu"une seule "raie" à la fréquencef0, tandis que celui deuaffcontient une infinité de raies positionnées aux fréquences : f

0, Fe-f0etFe+f0,2Fe-F0et2Fe+f0, etc...

L"affichage de synchronie est limité àFe/2: sif0> Fe/2, la "raie" de fréquencef0sort de la

fenêtre d"affichage...mais il y rentre la raie de fréquenceFe-f0. C"est lerepliement du spectre.

•Observer le phénomène en gardant fixesN= 1000etFe= 10 kHz, et en augmentant progressivement la fréquencef0du signal d"amplitude 5V délivré par le GBF, de1kHz

à 10kHz.

•En particulier, mesurer la fréquence du pic affiché par Synchronie lorsquef0= 6,0 kHz.

Conclure.

2.4 Application

•Visualiser le spectre d"un signal créneau de fréquencef= 1,0 kHz et d"amplitude U = 5,0 V. On veillera à bien choisir la fréquence d"échantillonnage et le nombre de pointsNpour ne pas observer de repliement et pour que les raies soient correctement représentées : choix de la résolution en fréquence. •Comparer l"amplitude des pics obtenue expérimentalement à la théorie : u(t) =+∞? p=04Uπ(2p+ 1)sin[(2p+ 1)2π ft] 3

MP1 - 2016 / 2017 TP n°4 : échantillonnage et quantification3 Visualisation à l"oscilloscope numérique

Un oscilloscope numérique numérise aussi les signaux analogiques qu"on lui envoie. Pour

l"oscilloscope utilisé, le nombre de points échantillonnés est toujoursN= 5000. La période

d"échantillonnageTe(et doncFe) se règle grâce à la base de temps, en sélectionnant l"échelle

temporelle horizontale. SiΔTest la durée total affichée sur l"écran :ΔT=NTe= 5000Te, d"oùTe. Envoyer le signal sinusoïdalu(t) =U0cos(2π f0t+?)de fréquencef0= 1,00 kHz avec une amplitudeU0= 5,0 V, sur la voie 1 de l"oscilloscope. L"oscilloscope permet d"afficher le spectre en amplitude. Pour cela : •Appuyer sur la toucheMath. •Appuyer surFFTen bas à gauche de l"écran.

•Un menu apparaît verticalement à droite de l"écran. En appuyant sur les touches en face

de chaque item du menu, on peut sélectionner la voie (1 ou 2) pour laquelle sera affiché

le spectre, l"échelle verticale (choisirlinéaire), la fréquence minimale affichée (fmin) par

le bouton rotatifaet le nombre de Hertz par division à l"aide du bouton rotatifb.

•Un cadre (en rouge) apparaît en bas à gauche de l"écran avec les échelles verticales (en

V/div), horizontal (en Hz/div), ainsi que la fréquence de Nyquist (Fe/2) que l"on choisit en tournant le bouton de l"échelle temporelle, c"est à dire de la base de temps). En appuyant surcursorson peut afficher deux curseurs horizontaux ou verticaux (par

appuis répétés sur cursors) qui permettent de mesurer les fréquences et les amplitudes du

spectre. Prendre le temps de se familiariser avec ces réglages et noter tous les points importants.

Pour finir, visualiser le spectre du signal créneau, en choisissant correctement la fréquence de Nyquist et mesurer à nouveau les fréquences et le amplitudes des différents pics. 4quotesdbs_dbs16.pdfusesText_22
[PDF] solution commerciale definition

[PDF] masse volumique acide chlorhydrique

[PDF] dosage des ions chlorure par nitrate d'argent

[PDF] dosage des chlorures par la méthode de mohr pdf

[PDF] probabilité collège exercices

[PDF] tp sur ta et tac de l'eau

[PDF] dosage des chlorures méthode de mohr

[PDF] jeux mathématiques 6ème

[PDF] eduscol epi maths

[PDF] analyse spectre ir aspirine

[PDF] modéliser en mathématiques

[PDF] jeux mathématiques collège

[PDF] eduscol maths cycle4

[PDF] comment tracer une courbe d'intégration rmn

[PDF] cours rmn master