[PDF] HISS a new tool for HI stacking: application to NIBLES spectra





Previous PDF Next PDF



No Evolution in the IR-Radio Relation for IR-Luminous Galaxies at z

22 Mar 2010 5 AIM Unité Mixte de Recherche CEA CNRS Université Paris. VII UMR n158 France. 6 National Radio Astronomy Observatory



1 NOMINATION DES MAITRES DE CONFERENCES AU COURS

28 May 2015 (Les références des emplois sont données à titre indicatif). Sont nommées en qualité de ... 4271/3028. MME VALERIE ... UNIVERSITE PARIS 13 :.



Sans titre

Genomics Platform Institut Imagine



The impact of AGN feedback on galaxy intrinsic alignments in the

26 A?u 2022 4Institut d'Astrophysique de Paris CNRS & Sorbonne Université



BIOLOGICAL DIVERSITY AND CONSERVATION

15 Ara 2020 Cilt / Volume 13 Say? / Issue 3 Aral?k / December 2020 ... Journals Library; Feng Chia University Library; GAZ? Gazi University Library; ...



The JWST Extragalactic Mock Catalog: Modeling Galaxy

25 May 2018 through the Near-IR over 13 Billion Years of Cosmic History ... UPMC-CNRS UMR7095



Scientific Synergy between LSST and Euclid

4 APC Astroparticule et Cosmologie



leay:block;margin-top:24px;margin-bottom:2px; class=tit wwwgalaxieenseignementsup-recherchegouvfrUNIVERSITE PARIS 13 Référence GALAXIE : 4271

UNIVERSITE PARIS 13 Référence GALAXIE : 4271 Numéro dans le SI local : 1193 Référence GESUP : Discipline : H0202 - Lettres modernes Profil : Lettres Culture generale expression et communication education populaire conduite de projet Implantation du poste : 0931238R - UNIVERSITE PARIS 13 Localisation : Bobigny Code postal de la



leay:block;margin-top:24px;margin-bottom:2px; class=tit wwwgalaxieenseignementsup-recherchegouvfrECOLE NORMALE SUPERIEURE DE PARIS Référence GALAXIE : 4271

N° de section CNU : 23 N° Galaxie : 4271 PRESENTATION GENERALE Spécialité : L’École Normale Supérieure de Paris (ENS-PSL) ouvre un poste de MCF en géographie intitulé « Territoires et Inégalités : politiques pratiques représentations » au sein du département



leay:block;margin-top:24px;margin-bottom:2px; class=tit wwwgalaxieenseignementsup-recherchegouvfrUNIVERSITE PARIS 11 Référence GALAXIE : 4271

UNIVERSITE PARIS 11 Référence GALAXIE : 4271 Numéro dans le SI local : Référence GESUP : 0906 Discipline : H1300 - Mathematiques Profil : Informatique et Mathematiques Implantation du poste : 0911101C - UNIVERSITE PARIS 11 Localisation : IUT Orsay Code postal de la localisation : 91406 Etat du poste : Vacant Adresse d'envoi du dossier



leay:block;margin-top:24px;margin-bottom:2px; class=tit wwwgalaxieenseignementsup-recherchegouvfrUNIVERSITE PARIS-DAUPHINE Référence GALAXIE : 4271

UNIVERSITE PARIS-DAUPHINE Référence GALAXIE : 4271 Numéro dans le SI local : 0249 Référence GESUP : Discipline : H0422 - Anglais Profil : Anglais Implantation du poste : 0750736T - UNIVERSITE PARIS-DAUPHINE Localisation : PARIS Code postal de la localisation : 75016 Etat du poste : Vacant Contact administratif : N° de téléphone : N° de



leay:block;margin-top:24px;margin-bottom:2px; class=tit wwwgalaxieenseignementsup-recherchegouvfrUNIVERSITE PARIS 13 Référence GALAXIE : 4524

UNIVERSITE PARIS 13 Référence GALAXIE : 4524 Numéro dans le SI local : 0126 Référence GESUP : 0126 Corps : Maître de conférences Article : 26-I-1 Chaire : Non Section 1 : 74-Sciences et techniques des activités physiques et sportives Section 2 : 66-Physiologie Section 3 : Profil : STAPS / PHYSIOLOGIE Job profile : STAPS / PHYSIOLOGY



Searches related to universite paris 13 référence galaxie 4271

Référence GALAXIE : 4471 Numéro dans le SI local : 1409 Référence GESUP : Discipline : Profil : Implantation du poste : Localisation : Code postal de la localisation : Etat du poste : 1409 H0422 - Anglais 0931238R - UNIVERSITE PARIS 13

MNRAS000,1 {42( 2017)P reprint2 Au gust201 9Co mpiledus ingM NRASL ATEX style le v3.0 HISS, a new tool for Histacking: application to NIBLES spectra

J. Healy,

1;2?S-L. Blyth,1E. Elson,1;3W. van Driel,4;5Z. Butcher,6S. Schneider,6

M.D. Lehnert,

7and R. Minchin8;9

1 Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

2Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AV Groningen, The Netherlands

3Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Bellville, 7535, South Africa

4GEPI, Observatoire de Paris, PSL Research University, CNRS, 5 place Jules Janssen, 92190 Meudon, France

5Station de Radioastronomie de Nancay, Observatoire de Paris, CNRS/INSU USR 704, Universite d'Orleans OSUC, route de Souesmes,

18330 Nancay, France

6University of Massachusetts, Astronomy Program, 619E LGRT-B, Amherst, MA 01003, U.S.A.

7Sorbonne Universite, CNRS UMR 7095, Institut d'Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France

8Arecibo Observatory, National Astronomy and Ionosphere Center, Arecibo, PR 00612, USA

9SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moett Field, CA 94035, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Histacking has proven to be a highly effective tool to statistically analyse average Hi properties for samples of galaxies which may or may not be directly detected. With the plethora of Hidata expected from the various upcoming Hisurveys with the SKA Precursor and Pathfinder telescopes, it will be helpful to standardize the way in which stacking analyses are conducted. In this work we present a new python-based package, HISS, designed to stack Hi(emission and absorption) spectra in a consistent and reliable manner. As an example, we use HISS to study the Hicontent in various galaxy sub-samples from the NIBLES survey of SDSS galaxies which were selected to represent their entire range in total stellar mass without a prior colour selection. This allowed us to compare the galaxy colour to average Hicontent in both detected and non-detected galaxies. Our sample, with a stellar mass range of1081 INTRODUCTION How galaxies evolve over cosmic time is currently a key area of research in astrophysics. A great deal is already known about the evolution of the stellar content of galax- ies due to recent infrared (Spitzer,W erneret a l.2 004), optical (Sloan Digital Sky Survey,

Y orket a l.

2 000 and ultraviolet (Galaxy Evolution Explorer,

B ianchi&

GALEX Team

2 000 )su rveys.H owever,co mparatively little is known about the evolution of the gas in galaxies. Understanding how the cold gas evolves is important as it is the raw fuel for the formation of stars and thus galaxies. Neutral atomic hydrogen (Hi) forms the most signi- cant reservoir of neutral gas in galaxies. Studies have shown that blue, star-forming galaxies have a higher fraction of E-mail: julia@ast.uct.ac.zaHigas compared to red, quiescent galaxies (e.g.Ro berts&

Haynes

1 994

Ga vazziet a l.

19 96

M cGaugh& d eB lok

1 997

Cortese et al.

2 011

F abelloet a l.

2 011

B rowne ta l.

20 15 which suggests that Hiplays an important role in star formation. Hiis dicult to detect in most galaxies beyond the local universe (z0:06) with existing radio telescopes due to the weak nature of the emission. Researchers have had to exploit dierent techniques in order to measure very weak Hisignals from galaxies. One such technique is Histacking; with this technique, an average Himass per galaxy can be estimated by co-adding the Hispectra of a sample of galaxies in which Hiis not necessarily directly detected.

The idea of co-adding the undetected Hispectra in

studies of the gas content in galaxies was rst presented by

Zw aanet a l.

2001
)an d

Ch engaluret a l.

2001
).B oth groups were studying the Hiwithin galaxies located in and

©2017 The Authors??X??¬∞???????∞??∞←←??∫????⎷??GA?←←∞←A?}←??∞?

2J. Healy et al.

around clusters. With low detection counts in their samples, both groups independently co-added the non-detections in an eort to obtain a statistically meaningful averaged detection for their samples. Stacking analyses have become commonplace in the last

15+years. The technique has been applied in various areas:

Hicontent of galaxies in dense environments and how the gas content relates to other observables (

Chengalur et al.

2001

V erheijenet a l.

2 007

La het a l.

2 009

Ja eet a l.

2 016 gas content of active galaxies (

Gerebet al .

2 013 2 015 measurement of at low to intermediate (z<0:4) redshifts

Lahet a l.

2 007

Del haizeet a l.

2 013

Rh eee ta l.

2 013 2016
);a ndu singst ackingto st udyth erel ationsb etweenH i and various stellar mass/star formation indicators (

Fabello

et al. 2 011 2 012

B rownet a l.

2 015 20 17

G erebet a l.

2 015 The gas scaling relations for galaxies are average trends which relate the Himass (MHi) or Himass to stellar mass (M ?) ratio (gas fraction,fHi) to various other galaxy properties. Stacking a sample of5000 galaxies with M ?>1010Mthat had both ultraviolet and optical imaging,

F abelloet a l.

2011
)fo undu singH istacking that the gas fraction correlates better with NUVrcolour than stellar mass. This result was later conrmed and extended to a sample with M ?>109MbyB rownet a l.( 2015). To date, studies of the Higas scaling relations have been limited to samples with M ?>109M, a mass which has been identied as a turning point around which the M Hi vs M ?slope changes (Huang et al.2 012;M addoxet a l.2 015). Directly detecting Hiwith current radio telescopes beyondz0:1is challenging due to the long observing times required (e.g. HIGHz (

Catinella & Cortese

2 015 ) on Arecibo using>300hours and CHILES (Fernandeze ta l. 2016

He sset a l.

2 018 )o nth eJV LArequ iring1000hours of observing time). The upcoming surveys with the SKA

Precursors and Pathnders (e.g. MeerKAT,

B oothet a l.

2009
;A SKAP,

Jo hnstonet al .

2 008 ;A PERTIF,

V erheijen

et al. 2 008 )wi llg reatlye xtendt here dshiftra ngeo ver which Hiin galaxies is studied, either directly or indirectly. Techniques such as Histacking will have an important role to play in order to study the average Hiproperties of dierent galaxy samples, particularly at higher redshifts (z&0:6). Deep SKA Precursor surveys such as LADUMA1

Holwerdaet a l.

2 011 )o nM eerKATh aveid entiedst acking as an important tool to probe higher redshifts, and push to lower Himass limits.

As we rapidly approach the start of the Precursor

Surveys, work is under-way on developing a data analysis toolkit that will enable consistent and comparable studies of the survey data. Already available is the versatile source nder,SoFiA(Serraet a l.2 015).Wi tht hei mportant role that stacking will play in the analysis of high redshift and low mass samples, it is imperative that a tool capable of reliably and consistently stacking Hispectra is developed.

In this work, we present our new software pack-

1

Looking At the Distant Universe with the MeerKAT Arrayage, HISS, that has been designed for the astron-

omy community in response to the need for a stack- ing software package. HISS can be downloaded from https://github.com/healytwin1/HISS. We use HISS to revisit the gas scaling relations with a sample of 1000 galaxies from the Nancay Interstellar Baryon Legacy Extra- galactic Survey (NIBLES v anDriel et a l. 2 016 ).N IBLES is an SDSS-selected targeted Hisurvey with the Nancay Radio Telescope which aims to study the Hiproperties of galaxies as a function stellar mass, covering a representable M ?range of the ensemble of galaxies in the nearby Universe. The outline for this paper is as follows: the rst half of the paper (Section 2) describes the design of the HiStacking Software (HISS). In the second half of the paper (Section 3 and Section 4), we give an introduction to the NIBLES Sur- vey and the ancillary data we use in our stacking analysis and describe the classication of Hinon-detections. We use the NIBLES sample to explore the well-known Himass to stellar mass scaling relations in Section 4, and nally, sum- marise our ndings in Section 5.

2 THE HISTACKING SOFTWARE (HISS)

The stacking method that the software needs to implement can be summarized by the following steps: (i)

I ngest1 D21cm Hispectra (radio data) and list of

associated redshifts for the sample of galaxies to be stacked; (ii) S pectrallysh ifta ndre- scaleth eH ispectra to align the expected line emission at a common frequency (usually the Hirest frequency:1420:4058MHz); (iii) W eightt hesp ectra( accordingt oa p referredw eight- ing scheme) and co-add the spectra. We have designed and created the HiStacking Software (HISS) package, after discussion with colleagues and with the following guiding principles in mind: be freely available in most operating systems to be open source easy to modify (extensible) stack hundreds or thousands of galaxy spectra in an ecient and reliable manner.

The Python

2programming language was chosen for

development of HISS because it is freely available, can be used on any operating system, and is also one of the most commonly used languages within the astronomy community. Where appropriate, HISS makes use of the publicly available Python modules (such as AstroPy, NumPy, SciPy, etc.) which have been optimized for data input, manipulation, and display.

Fig. 1

sh owsa owd iagramo fh owt hep rocessesre- quired to create a stacked spectrum are incorporated in the dierent modules of HISS. In the sections that follow we will illustrate how each of the processes highlighted in

F ig.1

a re implemented. Basic instructions on how to run HISS can be found in Appendix A 1 2 Developed in Python 2.7, but compatible with Python 3

MNRAS000,1 {42( 2017)

NIBLES III: Stacking3Start

Input Module (x2.2)Cong File

(x2.2)Catalogue

File (x2.2)User input point 1

Bin

Catalogue?

(x2.2)Bin Module

Stack Module (x2.3)

1.

S electc atalogueo fH ispectra (x2.3.1)

2.

C onvertsp ectrato res t-frame( x2.3.2)

3.

C o-addsp ectra( x2.3.4)Spectra

Analysis Module (x2.4)

Calculate prole detection statistics (x2.4.1)

Manipulate stacked spectrum (x2.4.2)

Characterise stacked prole (x2.4.3)

Calculate uncertainty (x2.4.4)

Save results (x2.5)Uncertainty Module (x2.4.4)Stacking

OutputDisplay

Data? (x2.6)User input point 2

Display Module (x2.6)Stopnoyes

noyes

Figure 1:This

ow diagram shows how the individual spectra and user information are taken by HISS to produce a stacked

spectrum from which average galaxy properties (such as total Himass, MHi, and the Hi-to-stellar mass ratio,fHi) may be

extracted. The orange rectangles show the six modules of the package, the blue parallelograms show the points of input or

output, and the green diamonds show where the user may choose to incorporate the optional modules.

MNRAS000,1 {42( 2017)

4J. Healy et al.

2.1 Simulated Data

When developing new data analysis tools, one of the most important steps is to quantify the accuracy and reliability of any generated results. For this purpose, simulated spec- tra are used instead of real spectra because properties of the input data are then well known. In this work, we use a data set of 1000 simulated Hiproles of galaxies to il- lustrate and test the capabilities of HISS. The simulated Hispectra are created using the formulation outlined in

Obreschkow et al.

2009c
,A ppendixA ),a nda reb asedo n the evaluated properties extracted from the S

3-SAX cata-

logue (

Obreschkow et al.

20 09a

b c )fo rga laxiesi na red shift range of0:1Gaussian noise of16Jy per channel.

2.2 Catalogue of Hispectra

When initiated, HISS requires some information about the sample of Hispectra { seeF ig.2 fo ra no verview.Th eI nput Module requires two input les: a conguration le and a catalogue le. There are two ways to provide HISS with the required information: the user can provide a text le in JSON

3format or use the graphical user interface shown

in

Fi g.2

t og eneratea c onguration le( alsoin JS ON format). The JSON format is used for the conguration le as it is easy to read/write, and when imported into Python, the information is dumped into an easy - to - access Python dictionary. The conguration le includes options such as dierent weighting functions for the stacking procedure, and options to bin the stacking sample based on additional data provided in the catalogue le.

The catalogue le is a user-created text le in CSV

4 format that contains at least the following columns,

Object ID

Spectrum lename

Redshift

Redshift uncertainty

Other data (optional)

for each spectrum that the user would like to include in the stack. Although the catalogue le may contain any number of columns, the non-optional columns mentioned above are those that are required to run HISS. Additional columns containing numerical information such as stellar mass or optical colour may be used to rene the catalogue into a number of dierent sub-samples to be stacked separately.

This rening is done through the Bin Module (

Fig. 1

).I n this rst version of HISS, bins can only be created using one quantity, e.g. stellar mass or colour, and the stacked results are stored for each sub-sample 5. During the processing of the conguration le, the code 3 JSON stands for JavaScript Object Notation, a JSON format- ted le has the extension.json

4comma separated values

5In the current implementation this process is sequential i.e. each

binned sub-sample of spectra is stacked one after the other. This

process will be parallelised in future versions.checks that the catalogue le and location of the spectra

exist. If these checks are passed, HISS will continue.

2.3 Stacking the spectra

The stacking procedure is the heart of HISS, and is con- trolled by the Stack Module which is responsible for read- ing in and preparing each spectrum for stacking, as well as maintaining the stacked spectrum and associated informa- tion (e.g.,number of objects in the stack, stacked noise). One of the features of this module is the option that allows the user to watch the progress of the stacking in a window such as the one in

F ig.A 1

.T hep rogressw indowsh owsea cho f the spectra in the observed frame as they are read in, as well as the individual spectra as they are converted to the rest-frame and then added to the total stacked spectrum.

2.3.1 Reading in the spectra

Regardless of how the Hispectra were created, HISS requires that the spectra be in a text le type format containing a column for the spectral axis (either frequency or velocity) and another for the ux density (in units of

Jy, mJy, Jy or

ux density/beam).

Fig. A2

s howsa sel ectionof t enof t he1 000si mulatedquotesdbs_dbs22.pdfusesText_28
[PDF] Calendrier 2017 - Premier Semestre - iCalendrier

[PDF] Calendrier 2018 - Premier Semestre - iCalendrier

[PDF] STÉ

[PDF] Dictionnaire universel de medecine (etc) - Résultats Google Recherche de Livres

[PDF] CAPÍTULO II LA ORGANIZACIÓN 21 Concepto - Biblioteca UDEP

[PDF] El sistema de producción y operaciones - Nulan

[PDF] Les différents types de fournisseurspdf

[PDF] ch1 - les factures d 'achats et ventes sans remise - VOTRE site de

[PDF] Évaluation et suivi des stocks Stotk

[PDF] LA COMPTABILITE ET LE BAC PRO GApdf - CRCF

[PDF] gestion administrative des relations exernes - Académie de Nice

[PDF] gestion administrative des relations exernes - Académie de Nice

[PDF] La innovación - OEI

[PDF] Inch to Metric Conversion Chart - Bearing King

[PDF] Imches To Millimeters - WalzCraft