[PDF] INTEGRALS and DERIVATIVES - Yeshiva University





Previous PDF Next PDF



Analyse numérique en Python Intégration et dérivation

Déterminer l'intégrale consiste donc à estimer cette aire aussi l'approximation de f par f peut être vue comme l'approximation de la forme géométrique sous la 



Calcul dintégrale : méthode des trapèzes Algorithme

2020?9?13? En langage Python. • On définit la fonction à intégrer. • On définit la fonction A(ab



Python MP PC

TSI Oral



Normalización radiométrica iterativa en Detección de Cambios

IV se muestran las líneas de código PYTHON que estructuran los dos script para trabajar sobre ArcGIS10.0. Finalmente en el apartado 5.5.



Intégrale dune fonction continue sur un intervalle quelconque

méthodes des rectangles ou des trapèzes permettent d'obtenir une approximation numérique de la valeur de l'intégrale. Exemples de codes python pour 



Analyse numérique avec Python

2014?5?22? Python) quelques algorithmes classiques d'analyse numérique. ... 1.5 Déjà disponible en Python ... l'intégrale (obtenue avec Python!)



INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA-. LES. 6. En la integral doble. ??. D f(x y) dxdy



Computerphysik 41. Integrieren mit Python

2013?7?8? Für ein- zwei- und dreifach-Integrale stehen die Funktionen quad



Derivadas e integrales

f(x) - f(x0) x - x0 se dice que la función es derivable en x0 y f/(x0) es el valor de la derivada de f en el punto x0.



Métodos Numéricos

integrales de funciones dadas) desde la nueva perspectiva de los métodos numéricos. Es habitual que en los cursos iniciales de cálculo uno aprenda a derivar 



INTEGRALS and DERIVATIVES - Yeshiva University

# in Fortran or C They will thus execute much faster than pure Python code # As a rule of thumb we expect compiled code to be two orders of magnitude # faster than pure Python code # Scipy is built on numpy # All functionality from numpy seems to be available in scipy as well import numpy as np x = np arange(0 10 1 ) y = np sin(x) print(y)



CALCUL INTÉGRAL - maths et tiques

Avec Python on programme cet algorithme pour la fonction !(()=(# sur l’intervalle [1 ; 2] On exécute plusieurs fois le programme pour obtenir un encadrement de l'intégrale de la fonction carré sur [1 ; 2] En augmentant le nombre de sous-intervalles la précision du calcul s'améliore car



Intégration et dérivation - cpge paradise

Intégration et dérivation Ce chapitre est le premier d’une série s’intéressant à la question du calcul numérique Nous verrons dans ces chapitres comment Python peut être utilisé comme un outil aidant à résoudre des problèmes de mathématiques de physique de sciences de l’ingénieur ou bien encore de chimie



Calcul d’intégrale : méthode des trapèzes Algorithme

En langage Python • On dé?nit la fonction à intégrer • On dé?nit la fonction A(abn) qui calcule un approximation de l’intégrale en découpant l’intervalle en n parties — qui calcule le pas et initialise s à zéro — à chaque boucle rajoute l’aire du trapèze : T i = [f(a)+f(a +p)]p 2 — puis incrémente a from



CalculScienti?que avecPython - univ-toulousefr

Python permet aux programmes d’être écrite de façon compacte et lisible Les programmes écrits en Python sont généralement beaucoup plus courte que équivalent C C + + ou des programmesJavapourplusieursraisons: lestypesdedonnéesdehautniveauvouspermettentd’exprimerdesopérationscomplexes enuneseuleinstruction;



Chapitre 4 METHODES SUR LE CALCUL INTEGRAL ET LES EQUATIONS

Chapitre 4 METHODES SUR LE CALCUL INTEGRAL ET LES EQUATIONS DIFFERENTIELLES Chapitre 4 METHODES SUR LE CALCUL INTEGRAL ET LES EQUATIONS DIFFERENTIELLES Il va être question dans ce chapitre de calcul intégral et d’équations différentielles dont nous allons donner en introduction quelques notions pour que tout soit bien clair par la suite



Quelques méthodes d'intégration numérique

Integration_Numerique 19/04/2018 17:14 http://localhost:8888/notebooks/Integration_Numerique/Integration_Numerique ipynb# Page 4 sur 8 2 La méthode des trapèzes



Informatique Introduction à Scipy Python scientifique Scipy

Informatique Introduction à Scipy Python scientifique Scipy Organisation générale de Scipy Le module Scipy est constitué de plusieurs sous-modules - en voici quelques-uns : scipy fftpack transformation de Fourier scipy integrate intégration et intégration d’équations différentielles scipy interpolate interpolation scipy linalg



Informatique TP3 : Calcul numérique d’une intégrale CPP 1A

Écrire une fonction python integrale_trapezes(a b n) qui calcule l’intégrale de la fonctionf(x) deaàbavecnintervallesenfaisantauplusn+1 appelsàlafonctionf



Python MP PC PSI TSI Oral

Les instructions nécessaires aux exemples suivants sont listés ci-dessous import numpy as npimport scipy optimize as resolimport scipy integrate as integrimport matplotlib pyplot as plt Nombres complexes Python calcule avec les nombres complexes Le nombre imaginaire pur se note1j



Introduction to Python - Harvard University

• Binding a variable in Python means setting a name to hold a reference to some object • Assignment creates references not copies • Names in Python do not have an intrinsic type Objects have types • Python determines the type of the reference automatically based on the data object assigned to it



Notes on Fermi-Dirac Integrals 3 - nanoHUB

6 () F jF e F ? ? ? (29) which means that for all orders j the Fermi-Dirac integral approaches the exponential in the non-degenerate limit To examine Fermi-Dirac integrals in the degenerate limit we consider the



Searches related to integrale python filetype:pdf

It is a Python library that provides a multidi- mensional array object various derived objects (such as masked arrays and matrices) and an assortment of routines for fast operations on arrays including mathematical logical shape manipulation sorting selecting I/O discrete Fourier transforms basic linear algebra basic statistical

#---------------------------# INTEGRALS and DERIVATIVES#---------------------------# Chapter 5 of the book# Some YouTube videos about integrals# https://www.youtube.com/watch?v=eis11j_iGMs# https://www.youtube.com/watch?v=4grhQ5Y_MWo# SciPy page about integrals# https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html# SINGLE INTEGRAL: area under a curve# DOUBLE INTEGRAL: volume under a surface#---------------------------# SCIPY#---------------------------# We can do derivatives and integrals using SCIPY## Page with explanantions about SciPy

# https://www.southampton.ac.uk/~fangohr/teaching/python/book/html/16-

scipy.html## Numpy module: vectors, matrices and linear algebra tools.# Matplotlib package: plots and visualisations.# Scipy package: a multitude of numerical algorithms.## Many of the numerical algorithms available through scipy and numpy are # provided by established compiled libraries which are often written # in Fortran or C. They will thus execute much faster than pure Python code.# As a rule of thumb, we expect compiled code to be two orders of magnitude # faster than pure Python code.# Scipy is built on numpy. # All functionality from numpy seems to be available in scipy as well.import numpy as npx = np.arange(0, 10, 1.)y = np.sin(x)print(y)import scipy as spx = sp.arange(0, 10, 1.)y = sp.sin(x)print(y)

#%%#---------------------------# LAMBDA FUNCTION#---------------------------print()# Lambda function is similar to a definition,# but # *) the lambda definition does not include a return statement;# *) we can put a lambda definition anywhere a function is expected;# *) we don't have to assign it to a variable at all.# Go through:

# https://www.southampton.ac.uk/~fangohr/teaching/python/book/html/16-

scipy.html# https://www.tutorialspoint.com/scipy/scipy_integrate.htm## Comparedef func(x): return x ** 3print(func(5))print()fanc = lambda x: x ** 3print(fanc(5))#%%# # NUMERICAL INTEGRAL# ------------# Example 1# -----------print()import scipy.integrate as integrateimport numpy as npimport mathfunc = lambda x: math.exp(-x**2)# ------------------------------# numpy could also have been used#func = lambda x: np.exp(-x**2)# ------------------------------------

# definition could also have been used#def func(x): return math.exp(-x**2)sol1=integrate.quad(func, 0, 1)print(sol1)# The solution contains two numbers. # The first is the solution of the of integral # and the second value is # the estimate of the absolute error in the value of the integral.## If we just want to see the solution, we can writeprint()print("Printing just the solution:")sol,err=integrate.quad(func, 0, 1)print(sol)# The scipy documentation states that integrate.quad uses # a technique from the Fortran library QUADPACK. # QUADPACK provides several routines using different techniques.# As scipy is open source, you can actually read the code for integrate.quad at# https://github.com/scipy/scipy/blob/master/scipy/integrate/quadpack.py#%%### MULTIPLE INTEGRALS#### quad: Single integration# dblquad: Double integration# tplquad: Triple integration## # https://www.tutorialspoint.com/scipy/scipy_integrate.htm# ------------# Example 2# -----------import scipy.integratefrom numpy import expfrom math import sqrtfunc = lambda x, y : 16*x*ylowY = lambda x : 0highY = lambda x : sqrt(1-4*x**2)int = scipy.integrate.dblquad(func, 0, 0.5, lowY, highY)print (int)

# %%# MORE EXAMPLES MORE EXAMPLES MORE EXAMPLES# ---------------------# SINGLE INTEGRAL# ---------------------import scipy.integrate as integrateimport numpy as npimport math# Either we define the function like thisdef func(x): return x ** 3sol=integrate.quad(func, 0, 1)print(sol)# Or we lambdify itfanc = lambda x: x ** 3sol=integrate.quad(fanc, 0, 1)print(sol)# ---------------------# DOUBLE INTEGRAL# ---------------------from scipy import integrateimport numpy as npimport math# EITHERdef func(y,x): return 1/math.sqrt(x*y-x**2)def flow(x): return x+2def fup(x): return x+3sol=integrate.dblquad(func, 1, 2, flow, fup)print(sol)# VERY CAREFUL above!! The order of the variables in func matters!!!# If we are going to integrate y first and then x, make sure to have# func(y,x) and NOT func(x,y)# ORfunc = lambda y, x: 1/math.sqrt(x*y-x**2)sol=integrate.dblquad(func, 1, 2, lambda x: x+2, lambda x: x+3)print(sol)

# OR yetdef func(y,x): return 1/math.sqrt(x*y-x**2)sol=integrate.dblquad(func, 1, 2, lambda x: x+2, lambda x: x+3)print(sol)#%%#---------------------------# SYMPY#---------------------------# https://www.sympy.org/en/index.html# SumPy is a Python library for symbolic mathematics.# # SYMBOLIC INTEGRAL# ------------# Example 3# -----------import scipy.integrate as integrateimport sympy as sypx = syp.Symbol('x')intSym = syp.integrate(3.0*x**2+1,x)print( intSym )#%%# # METHODS of INTEGRATION# # Trapezoidal rule# Simpson's rule# Romberg integration# Gaussian quadrature # -------------------------------------# Example 4: # Integral of a semicircle of radius 1# ------------------------------------print()

import scipy.integrate as integrateimport numpy as npfunc = lambda x: np.sqrt(1.-x**2)print()print("The exact solution is Pi/2:",np.pi/2.)print()print("Using quad from scipy")sol,err=integrate.quad(func, -1, 1)print("Solution:",sol, " Error:", err)# --------------# RECTANGLES#---------------print()print("Writing our own code: adding rectangles")print()print("Just 10 intervals")Ntot=10som=0.Xlast=1.Xfirst=-1.delt=(Xlast-Xfirst)/Ntotprint("increment=",delt)for n in range(Ntot): print("where func is evaluated:",Xfirst+n*delt) som=som + func(Xfirst+n*delt)*deltprint("Solution for 10 intervals:",som)print()Ntot=100print(Ntot, "intervals")som=0.Xlast=1.Xfirst=-1.delt=(Xlast-Xfirst)/Ntotfor n in range(Ntot): som=som + func(Xfirst+n*delt)*deltprint("Solution:",som)print()Ntot=1000print(Ntot, "intervals")som=0.Xlast=1.Xfirst=-1.delt=(Xlast-Xfirst)/Ntotfor n in range(Ntot):

som=som + func(Xfirst+n*delt)*deltprint("Solution:",som)#%%### -----------------------------------------# STUDENTS READ THE BOOK (see Canvas)# about the TRAPEZOIDAL RULE and SIMPSON'S RULE# # STUDENTS PRESENT ON THE BOARD # (student selected by chance)# One student presents the TRAPEZOIDAL RULE# One student presents the SIMPSON'S RULE# This exercise can be done in pairs or groups#### -----------------------------------------# LET US NOW CONSIDER THE FUNCTION## x^4 - 2 x +1# in the interval x=0 to x=2## and compare the results that we obtain # by adding rectangles for N=10,100,100 and # by employing # the TRAPEZOIDAL RULE and SIMPSON'S RULE# -----------------------------------------func = lambda x: x**4 - 2.*x + 1.Xfirst = 0Xlast = 2.print()print("Exact solution")var=2exac=var**5/5 - var**2 + varprint("x^5/5-x^2+x in [0,2] is ", exac)print()Ntot=10print(Ntot, "intervals")delt=(Xlast-Xfirst)/Ntotsom=0.print("increment=",delt)

for n in range(Ntot): som=som + func(Xfirst+n*delt)*deltprint("Solution:",som)print("Percentage Error:", 100*abs(som-exac)/exac,"%")print()Ntot=100print(Ntot, "intervals")delt=(Xlast-Xfirst)/Ntotsom=0.for n in range(Ntot): som=som + func(Xfirst+n*delt)*deltprint("Solution:",som)print("Percentage Error:", 100*abs(som-exac)/exac,"%")print()Ntot=1000print(Ntot, "intervals")delt=(Xlast-Xfirst)/Ntotsom=0.for n in range(Ntot): som=som + func(Xfirst+n*delt)*deltprint("Solution:",som)print("Percentage Error:", 100*abs(som-exac)/exac,"%")# ------------------# TRAPEZOIDAL RULE#------------------# Exercise 1# Students solve in class for Ntot=10,100,1000# -----------------------------------------# SIMPSON'S RULE# The number of slices need to be EVEN !!!#------------------------------------------# Exercise 2# Students solve in class for Ntot=10,100,1000# --------------------------------------------# ROMBERG INTEGRATION# and# GAUSSIAN QUADRATURE# Read the book if you want to learn about them.#---------------------------------------------

#%%# -----------------------------------------------# -------------------# ERRORS ON INTEGRALS#--------------------# When the integrand f(x) is known,# there are equations available for # 1) the error using the TRAPEZOIDAL RULE is# error = [f'(a)-f'(b)]*(h^2/12)## 2) the error using the SIMPSON'S RULE is# error = [f'''(a)-f''''(b)]*(h^4/90)## where # f' = first derivative# f''' = third derivative# Integral performes from x=a to x=b# h = (b-a)/N and N = number of slices# ------------------------------# PRACTICAL ESTIMATION OF ERRORS# ------------------------------# valid also when f(x) is not known## Solve the integral with N1 steps and get I1# Solve the integral with N2=2*N1 steps and get I2# 1) the error for I2 using the TRAPEZOIDAL RULE is# error = abs(I2 - I1)/3## 2) the error for I2 using the SIMPSON'S RULE is# error = abs(I2 - I1)/15# -----------# Exercise 3# -----------# Students solve in class.# Use the trapezoidal rule with 20 slices and # calculate the integral of x^4 - 2 x +1# in the interval x=0 to x=2. # Using the "practical estimation of errors", # compute also the error. For this, get the integral for N1=10 and N2=20.

# ------------------------------# CHOOSING THE NUMBER OF STEPS# that gives a desired accuracy# ------------------------------# Read the Section 5.3 of the book# You will need this to solve Exercise 4 of the assignment#%%# ------------------------------# INTEGRALS OVER INFINITE RANGES# ------------------------------# The previous methods do not work,# because we would need an infinite number of sample points.# The solution to this problem is to change variables.## For an integral in x from 0 to infinity, # the standard change of variables from x to z is# # z = x/(1+x) so x = z/(1-z)## Then dx = dz/(1-z)^2# and# \int_0^infinity f(x) dx = \int_0^1 ( 1/(1-z)^2 ) f(z/(1-z)) dz## Many other choices work, so sometimes we need to play around# to find which works better, but # the choice above is often a first good guess (see exception in assignment!).# When the range is from a to infinity,# change x to y: y = x-a# and then y to z: z = y/(1+y)# See equations in the book.# When the range is from -infinity to a,# change z to -z# When the range is from -infinity to infinity,# split the integrals.# -----------# Exercise 4# -----------# Students solve in class the integral # \int_0^infinity exp(-t^2) dt## !!!!!!! CAREFUL !!!!!!!!!!!# At z=1, 1/(1-z) goes to infinity,

# so use z = 0.999999999999999# To solve it analytically, look at YouTube movie # https://www.youtube.com/watch?v=nqNzKeVCYBU## Show in class that:# \int_{-infinity}^{infinity} exp(-a x^2) dx = sqrt(pi/a) ## Use # (i) \int_{-infinity}^{infinity} exp(-a x^2) dx =

# sqrt[ (\int_{-infinity}^{infinity} exp(-a x^2) dx) (\int_{-infinity}

^{infinity} exp(-a y^2) dy) ]# (ii) x = r cos(theta) and y = r sin(theta)# Jacobian: | dx/dr dx/dtheta | # | dy/dr dy/dtheta | = r dr dtheta# (iii) z = r^2 and dz = 2 r dr# %%# ------------# DERIVATIVES# ------------# Forward difference# f' ~ [ f(x+h) - f(x) ]/h for small h# Backward difference# f' ~ [ f(x) - f(x-h) ]/h for small h# Central difference [BETTER OPTION]# f' ~ [ f(x+h/2) - f(x-h/2) ]/h for small h# For second derivatives and partial derivatives# see the book # ------------# Using SYMPY# ------------import sympy as sypx = syp.Symbol('x')ff = syp.diff(syp.sin(x),x)print(ff)

quotesdbs_dbs17.pdfusesText_23
[PDF] intégrale sinus cardinal

[PDF] intégrale stochastique mouvement brownien

[PDF] integrale stochastique pdf

[PDF] integrate python

[PDF] integrated agriculture

[PDF] intégrateur big data

[PDF] intégrateur sap france

[PDF] integrateur sap lyon

[PDF] intégration africaine définition

[PDF] intégration conglomérale

[PDF] integration de runge kutta

[PDF] intégration des élèves en difficulté dans les classes régulières

[PDF] integration des etudiants etrangers en france

[PDF] intégration des femmes dans le développement

[PDF] intégration des handicapés à l'école