[PDF] Méthodes numériques de résolution déquations différentielles





Previous PDF Next PDF



Méthodes numériques de résolution déquations différentielles

3.4.3 Runge Kutta à pas adaptatif et méthodes prédiction correction . . . . . . 21. 3.5 Fonctions Euler et Runge Kutta adaptée à y ? Rm . .



Méthodes dEuler et de Runge-Kutta

Méthodes d'Euler et de Runge-Kutta. Principe général : Il s'agit de méthodes de résolution numérique d'équations diffé- rentielles du premier ordre avec 



E.D.O. : méthodes numériques (cours 3)

13 janv. 2015 2 Méthodes à un pas ou à pas séparés. Schéma général. Convergence. Stabilité. Consistance. Ordre. 3 Méthode de Runge-Kutta. Principe.



Chapitre III ´Equations différentielles ordinaires

Exemples. La méthode d'Euler ainsi que des méthodes de Runge et de Heun sont données dans le tableau III.1. Deux méthodes de Kutta 



Réponses aux exercices du chapitre 7

Faire trois itérations avec h = 01 des méthodes d'Euler explicite



Résolution numérique dune équation différentielle Méthode de

Méthode de RUNGE-KUTTA RK4. Considérons une équation différentielle du premier ordre : y) f(x dx dy. = La méthode RK4 utilise plusieurs points 



Carcasse de la Methode de Runge-Kutta Dordre 5

4 févr. 2019 Ce présent travail est consacré pour les méthodes d'ordre 5 à 6 stades. Motsclés: Méthode Runge-Kutta équations de Butcher



Résolution de systèmes déquations différentielles ordinaires non

Quelques méthodes au fil de l'histoire. Comment contrôler le pas de temps ? 3 Analyse de la stabilité des méthodes de Runge-Kutta explicites 



Chapitre6_cor.ps (mpage)

Méthode de Runge Kutta : développement à l'ordre 2 yo donné k? = hf (x? yn) n. Ift2421. Trouver les valeurs de : a



Apport de la Méthode de Runge Kutta dordre 4 dans la Dynamique

We presented the Runge Kutta order 4 method under Matlab to solve the differential equations of a discrete system. MOTS-CLÉS. Système discret équations 



Runge-Kutta Methods

Runge-Kutta Methods Runge-Kutta Methods 1Local and Global Errors truncation of Taylor series errors of Euler’s method and the modi?ed Euler method 2Runge-Kutta Methods derivation of the modi?ed Euler method application on the test equation third and fourth order Runge-Kutta methods



Runge–Kutta methods for ordinary differential equations

Runge-Kutta Method of Order Two (III) I Midpoint Method w 0 = ; w j+1 = w j + hf t j + h 2;w j + h 2 f(t j;w j) ; j = 0;1; ;N 1: I Two function evaluations for each j I Second order accuracy No need for derivative calculations



3 Runge-Kutta Methods - IIT

Runge-Kutta methods are among themost popular ODE solvers They were ?rst studied by Carle Runge and Martin Kuttaaround 1900 Modern developments are mostly due to John Butcher in the 1960s 3 1 Second-Order Runge-Kutta Methods As always we consider the general ?rst-order ODE system y0(t) =f(ty(t)) (42)



Runge-Kutta method - Oklahoma State University–Stillwater

5 Adaptive step size control and the Runge-Kutta-Fehlberg method The answer is we will use adaptive step size control during the computation The idea is to start with a moderate step size When we detect the expected error is larger than " reduce the step size and recalculate the current step



Runge-Kutta Methods - Richard Palais

270 H Runge-Kutta Methods treesbuiltatthe(?????1)ststagetoanewrootnode Byconsidering themultiplicitiesofwaysthetreesarebuiltinbothmodelsandthe coe?cients that arise from the Runge-Kutta weighting coe?cients wewillobtainthematchingconditionsthatarenecessarytoachieve acertainorderofaccuracy



Searches related to méthode runge kutta PDF

4th-order Runge-Kutta method Introduction • In this topic we will –Derive the 4th-order Runge-Kutta method by estimating and averaging slopes –Look at the technique visually –See the error is O(h5) for a single step –Look at two examples of a single step –See how to apply this method under multiple steps •We will implement this

What was the aim of Runge Kutta methods?

In the early days of Runge–Kutta methods the aim seemed to be to ?nd explicit methods of higher and higher order. Later the aim shifted to ?nding methods that seemed to be optimal in terms of local truncation error and to ?nding built-in error estimators. Runge–Kutta methods for ordinary differential equations – p. 4/48

Is yn+1 a Runge-Kutta method?

yn+1=yn+hf(tn,yn). 1 i.e., the classical second-order Runge-Kutta method. 2hf(t+h,y(t+h)). yn+2=yn+ 2hf(tn+1,yn+1). This is not a Runge-Kutta method. It is an explicit 2-step method. In thecontext of PDEs this method reappears as theleapfrog method.

What are the disadvantages of Runge Kutta methods?

Runge–Kutta methods for ordinary differential equations – p. 45/48 Unfortunately, to obtain A-stability, at least for orders p > 2, has to be chosen so that some of the ciare outside the interval [0;1]. This effect becomes more severe for increasingly high orders and can be seen as a major disadvantage of these methods.

Can Runge Kutta methods be used for ordinary differential equations?

Runge–Kutta methods for ordinary differential equations – p. 41/48 without with transformation transformation LU factorisation s3N3N3 Transformation s2N Backsolves s2N2sN2 Transformation s2N In summary, we reduce the very high LU factorisation cost to a level comparable to BDF methods.

Méthodes numériques de résolution d"équations différentielles

Brian Stout

brian.stout@fresnel.fr

Université de Provence

Institut Fresnel, Case 161 Faculté de St Jérôme

Marseille, France

Fevrier 2007

Table des matières

1 Problème de Cauchy :2

2 Transformations vers un problème de Cauchy3

2.1 Traitement d"une équation différentielle d"ordre>1. . . . . . . . . . . . . . . . . 3

2.2 Equations différentielles à coefficients constants. . . . . . . . . . . . . . . . . . . 4

2.3 Exemple - Vol d"un point solide dans un champ de pesanteur.. . . . . . . . . . . 4

2.4 Détermination des paramètres initiaux. . . . . . . . . . . . . . . . . . . . . . . . 7

3 Solutions numériques des équations différentielles9

3.1 Formulation générale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Méthode itérative de Picard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Exemple : méthode de Picard pour résoudre l"équationd

dty(t) =t-y(t). 11

3.3 Méthodes basées sur la série de Taylor. . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Méthode d"Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Méthodes de Taylor d"ordre plus élevés. . . . . . . . . . . . . . . . . . . . 14

3.4 Runge Kutta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Runge Kutta d"ordre 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Runge Kutta : ordres 3 et 4. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.3 Runge Kutta à pas adaptatif et méthodes prédiction correction. . . . . . 21

3.5 Fonctions Euler et Runge Kutta adaptée ày?Rm. . . . . . . . . . . . . . . . . 21

4 Applications22

4.1 Mécanique des points solides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Mouvement d"un point solide avec forces de frottement:. . . . . . . . . . 22

4.1.2 Orbite d"un satellite :. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Circuits électriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Evolution temporelle des populations. . . . . . . . . . . . . . . . . . . . . . . . . 26

1

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

Une équation différentielle est une équation qui dépend d"une variabletet d"une fonctionx(t)

et qui contient des dérivées dex(t). Elle s"écrit : F t,x(t),x (1)(t),...,x(m)(t)? = 0oùx(m)(t)≡d mx dtm(1)

L"ordre de cette équation est déterminé par sa dérivée d"ordre le plus élevé. Donc l"équation (

1) est d"ordrem. La solution du problème consiste à trouver une fonctionx(t)qui soit solution de ( 1) et dérivable sur un intervalle fini det?[t

0,t0+T]deR. Souvent dans les applications, la variable

treprésente le temps, ett

0est alors l"instant initial. En général, il n"existe une solution unique

à une équation différentielle qu"une fois certaines conditions limites imposées surx(t)et ses

dérivées. Dans l"exemple de l"équation (

1) lesconditions initialessont les valeurs dex(t0),

x (1)(t0),...,x(m-1)(t0).

1 Problème de Cauchy :

La plupart des méthodes numériques pour résoudre les équations différentielles s"appliquent

à des problèmes du typeproblème de Cauchysuivant le nom donné par les mathématiciens. Ce

problème se formule de la manière suivante :

Trouvery(t)définie et dérivable sur[t

0,t0+T]et à valeurs dansRmtelle que :

dy(t) dt=f(t,y(t))?t?[t0,t0+T] y(t

0) =y0

(2) oùf(t,y(t))est une fonction deR m+1dansRmety0?Rm. Concrètement l"expression, "trouver y(t)à valeurs dansR mavecy0?Rm" consiste à dire pour des applications comme Matlab, que l"inconnuey(t)est un vecteur demfonctions inconnues avec pour condition limite le vecteur y 0: y(t) =?????y 1(t) y 2(t) y m(t)????? y

0=y(t0) =?????y

1(t0) y 2(t0) y m(t0)????? =?????y 0,1 y0,2... y 0,m ?(3) De même,f(t,y(t))est une fonction detet du vecteury(t)et doit retourner un vecteur colonne : dy(t) dt≡ddt?????y 1 y2... y m ?=f(t,y(t))≡?????f 1 f2... f m ?(4)

Pour la plupart des problèmes qui intéressent les scientifiques et les ingénieurs, des théo-

rèmes mathématiques assurent l"existence et l"unicité d"une solution au problème de Cauchy.

Néanmoins, souvent la solution ne peut être expriméeanalytiquement. Pour de tels problèmes,

on doit donc chercher à déterminer la fonctiony(t)par des méthodesnumériques. 2

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

2 Transformations vers un problème de Cauchy

Dans Matlab (Octave), de puissant programmes (fonctions) existent sous le nom générique de ODEs (Ordinary Differential Equation Solvers). Ils résolvent les systèmes de la forme de l"équation (

2). Le travail principal d"un utilisateur de Matlab consistedonc le plus souvent à

transformer son problème sous la forme de l"équation (

2). Dans bien des domaines, surtout ceux

des équations à dérivées partielles, les transformations d"un problème donné sous la forme d"un

problème de Cauchy sont toujours d"actualité comme problèmes de recherche.

2.1 Traitement d"une équation différentielle d"ordre>1

Dans ce cours, nous ne regarderons que la transformation d"une équation différentielle d"ordre

supérieur à 1, en problème de Cauchy. Considérons donc une équation différentielle d"ordrem

de la forme suivante : x (m)(t)≡dx (m-1) dt=?? t,x(t),x (1)(t),...,x(m-1)(t)? ?t?[t0,t0+T](5)

Posons de nouvelles fonctionsy

i(t)aveci?[1,2,...,m]définies telles que : y

1(t)≡x(t), y2(t)≡x(1)(t),..., ym(t)≡x(m-1)(t)(6)

Grâce à ces définitions, l"équation (

5) d"ordrems"écrit comme un système deméquations

dy1(t) dt=y(2)(t) dym-1(t) dt=y(m)(t) dym(t) dt=?(t,y1(t),y2(t),...,ym(t))(7) Ce système a donc la forme d"un problème de Cauchy en posant : y(t) =?????y 1(t) y m-1(t) y m(t)????? etf(t,y(t)) =?????y 2(t) y m(t) ?(t,y

1,...,ym)?????

(8)

L"équation (

5) s"écrira alors :

dy(t) dt=f(t,y(t))?t?[t0,t0+T](9) Pour obtenir alors un problème de Cauchy, il faut spécifier les conditions initiales(y

1(t0),y2(t0),

...,y

m(t0))ce qui revient à dire d"après l"équation (6), qu"il faut connaîtrex(t)et ses dérivées

jusqu"à l"ordrem-1au 'temps" initialt

0:?x(t0),x(1)(t0),...,x(m-1)(t0)?. On remarque qu"une

équation différentielle d"ordremd"une seule fonction inconnue,x(t), se traduit par un problème

de Cauchy avecmfonctions inconnues,y i(t), etmconditions initiales. 3

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

2.2 Equations différentielles à coefficients constants

En particulier, les équations différentielles à coefficientsconstants constituent une classe

d"équations de la forme de l"éq.(

5). Notamment quand?est de la forme :

t,x(t),x (1)(t),...,x(m-1)(t)? l"équation l"éq.(

5) peut s"écrire comme une équation différentielle à coefficients constants :

a

1x(t) +a2x(1)(t) +...+amx(m-1)(t) +x(m)(t) =s(t)(11)

où la fonctions(t)est communément appelée un terme source.

Pour des équations de la forme de l"éq.(

11), les substitutions de l"éq.(6) amènent à un système

d"équations de forme matricielle. Par exemple, une équation à coefficients constants d"ordre4

s"écrit : a

1x(t) +a2x(1)(t) +a3x(2)(t) +a4x(3)(t) +x(4)(t) =s(t)(12)

Après les substitutions de l"équation (

6), cette équation s"écrit :

a

1y1(t) +a2y2(t) +a3y3(t) +a4y4(t) +ddty4(t) =s(t)(13)

et l"équation (

9) peut s"écrire sous une forme matricielle :

d dt???? y 1(t) y 2(t) y 3(t) y

4(t)????

=????0 1 0 00 0 1 00 0 0 1-a1-a2-a3-a4 ?????y 1(t) y 2(t) y 3(t) y

4(t)????

+????000 s(t)???? (14)

Même s"il est intéressant de voir ce type de problème comme une équation matricielle, nous ne

devons pas oublier que la formulation de l"équation (

9) nous permet de traiter bien des problèmes

qui ne prennent pas la forme d"une équation matricielle. On remarque aussi qu"il y a beaucoup de zéros dans l"équation (

14) et donc une multiplication de matrice n"est pas la façon la plus

éfficace de programmerf(t,y(t))(Voir la fonction (A)de la section2.3ci-dessous).

2.3 Exemple - Vol d"un point solide dans un champ de pesanteur.

Imaginons qu"on cherche à résoudre numériquement le problème du mouvement d"un point solide de massemà la position-→x(t) =x?x+y?y+z?zayant une vitesse-→v= d-→x dtdans un champ de pesanteur-→g. (figure 1) La mécanique du point nous dit qu"il suffit d"appliquer la relation fondamentale de la dyna- mique au point solide : m d-→v dt=-→P=m-→g(15)

Puisqu"il s"agit d"une équation vectorielle, nous avons enprincipe trois équations scalaires à

résoudre, mais nous savons que le vol du point s"effectue dansun plan parallèle au plan défini

par(xOz). On arrive donc à un système de deux équations différentielles de deuxième ordre à

résoudre : d2x dt2= 0 d2z dt2=-g(16) 4

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

v(t) P xzv0 ?0 Fig.1 - Mouvement d"un point de masse dans un champ de pesanteur

Avec les conditions limites

x(t

0) =x0x(1)(t0) =v0,x

z(t0) =z0z(1)(t0) =v0,z(17) nous connaissons la solution exacte de chacune de ces deux équations : x(t) =x

0+v0,xt

z(t) =z

0+v0,zt-12gt

2(18)

Nous voulons simplement tester notre capacité à trouver la solution de façon numérique. La

connaissance d"une solution exacte nous permet de tester différentes méthodes de résolution numérique d"équations différentielles. Pour résoudre les équations différentielles d"ordre2de l"éq.(

16) on va définir des fonctions

du systèmeu(t)(pour ne pas confondre avec la positiony(t)) et invoquer les substitutions de l"éq.( 6) : u

1(t)≡x(t)

quotesdbs_dbs27.pdfusesText_33
[PDF] caractère de gervaise dans l'assommoir

[PDF] fiche de lecture l'assommoir par chapitre

[PDF] euler implicite python

[PDF] gervaise portrait physique social et moral

[PDF] methode euler equation differentielle

[PDF] la déchéance de gervaise dans l'assommoir

[PDF] calcul intégrale python

[PDF] python intégration numérique

[PDF] exercice python euler

[PDF] le médecin malgré lui acte 2 scène 4

[PDF] méthode dichotomie python

[PDF] le message andrée chedid résumé détaillé

[PDF] résolution équation différentielle matlab ode45

[PDF] le message andrée chedid genre

[PDF] algorithme méthode d'euler implicite matlab