[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Les ratios au cycle 4.pdf

Correspondance ratio fractions pourcentages et sens : Exercice 5 :⑤. Dans une entreprise



A Tournez la page S.V.P. A Tournez la page S.V.P.

9 sept. 2019 De leur côté les parents s'inquiètent de la réussite de leurs enfants au sein du collège. Ils se plaignent aussi de la quantité de devoirs ...



GÉOMÉTRIE DU TRIANGLE (Partie 1)

Exercice : Tracer un triangle quelconque ABC et écrire 3 inégalités triangulaires. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr c) La plus ...



Calcul mental - Mathématiques du consommateur

Les nombres compatibles sont des paires de nombres dont la somme est facile à utiliser dans ta tête. Les paires de nombres suivantes sont compatibles : 140 85 



fr3.pdf

de l'activité humaine. 1. 2. 3. 4. Page 5 ... travailler la maitrise du socle tout au long du cycle. › Un exercice autocorrigé est proposé à la fin de chaque ...



La correction de lorthographe grammaticale inspirée de lapproche

de la méthode pour les cas d'accord sujet-verbe ciblés systématiquement dans l'expérimentation tant dans les exercices ponctuels (activité décontextualisée) ...



La contribution de léducation prioritaire à légalité des chances des

Académie de Lille collège éducation prioritaire



Corrigés des exercices du livre et en ligne

EXERCICE 1. 1. Afin d'éclairer le directeur informatique quant à la décision de la composition de l'équipe projet destinée à accompagner le service 



Exercices de mathématiques - Exo7

On ne demande pas de démontrer quoi que ce soit juste d'écrire le contraire d'un énoncé. Correction ▽. Vidéo □. [000107]. Exercice 5. Compléter les 



La République à lÉcole

L'activité de l'élève dans la classe de mathématiques. Délivrer un savoir exercice ; ou pour limiter la liberté d'expression de la presse ou le droit des ...



mathématiques au cycle 4 - motivation engagement

https://maths.ac-creteil.fr/IMG/pdf/brochure_cyc60fb.pdf



Download Free Correction Des Exercices Du Livre De Maths 2as

12 sept. 2022 rection des exercices du livre CIAM de mathematique - Aide Afrique vous ... Je voudrais svp avoir la correction des exercices 1112



Cahier dexercices

Première partie : classe de CINQUIEME ANNEE. A. MATHEMATIQUES. A.1. NUMERATION. 1. Quelle est la valeur relative de 3 dans ce nombre 1350247.



FRANÇAIS DE BASE 7 8 et 9 années Programme détudes et

Enseignement et apprentissage dans le cadre du programme de français de base .. ... Les stratégies pour aider les élèves à améliorer leur perception et à.



GUIDE PÉDAGOGIQUE POUR LE PRIMAIRE

Ce guide pédagogique est destiné à toute classe du primaire où l'enseignement se dispense en français. Afin d'aider l'enseignant ou l'enseignante dans sa 



Exercices de mathématiques - Exo7

Calculer le quotient et le reste de la division euclidienne de a par b. Ensuite trouver une solution particulière (x0y0) à l'aide de l'algorithme.



Download File PDF Correction Des Exercices Du Livre De Maths

1 sept. 2022 corrigé manuel scolaire mathcorrection de livre de math 2eme science



6ème/5ème

Puisse ce guide aider chaque enseignant dans sa tâche et qu'il le prépare à bien conduire les activités d'enseignement/apprentissage dans sa classe ! Les 



fr3.pdf

Un élève de 5e doit pouvoir écrire seul un texte correct de 500 à 1 000 signes Il t'avertit dès le début



La pédagogie par objectifs.pdf

L'objectif pédagogique exprime le résultat visible qu'un apprenant doit atteindre ce qu'il sera capable de faire au terme de l'apprentissage. Il objective l' 

Exo7 Arithmétique dansZ1 Divisibilité, division euclidienne

Exercice 1Sachant que l"on a 96842=256375+842, déterminer, sans faire la division, le reste de la division du nombre

96842 par chacun des nombres 256 et 375.

Montrer que8n2N:

n(n+1)(n+2)(n+3)est divisible par 24; n(n+1)(n+2)(n+3)(n+4)est divisible par 120:

Montrer que sinest un entier naturel somme de deux carrés d"entiers alors le reste de la division euclidienne

denpar 4 n"est jamais égal à 3.

Démontrer que le nombre 7

n+1 est divisible par 8 sinest impair ; dans le casnpair, donner le reste de sa division par 8. Trouver le reste de la division par 13 du nombre 100 1000.
1. Montrer que le reste de la di visioneuclidienne par 8 du carré de tout nombre impair est 1. 2. Montrer de même que tout nombre pair vérifie x2=0(mod 8)oux2=4(mod 8): 3. Soient a;b;ctroisentiersimpairs. Déterminerlerestemodulo8dea2+b2+c2etceluide2(ab+bc+ca): 4. En déduire que ces deux nombres ne sont pas des carrés puis que ab+bc+canon plus.

2 pgcd, ppcm, algorithme d"Euclide

Exercice 7Calculer le pgcd des nombres suivants :

1.

126, 230.

2.

390, 720, 450.

3.

180, 606, 750.

Déterminer les couples d"entiers naturels de pgcd 18 et de somme 360. De même avec pgcd 18 et produit 6480.

Calculer par l"algorithme d"Euclide : pgcd(18480;9828). En déduire une écriture de 84 comme combinaison

linéaire de 18480 et 9828.

Notonsa=1 111 111 111 etb=123 456 789.

1. Calculer le quotient et le reste de la di visioneuclidienne de aparb. 2.

Calculer p=pgcd(a;b).

3. Déterminer deux entiers relatifs uetvtels queau+bv=p.

Résoudre dansZ: 1665x+1035y=45:

Exercice 12Combien 15! admet-il de diviseurs ?

Démontrer que, siaetbsont des entiers premiers entre eux, il en est de même des entiersa+betab.

Soienta;bdes entiers supérieurs ou égaux à 1. Montrer :

1.(2a1)j(2ab1);

2. 2 p1 premier)ppremier ; 2

3.pgcd (2a1;2b1) =2pgcd(a;b)1.

Soita2Ntel quean+1 soit premier, montrer que9k2N;n=2k:Que penser de la conjecture :8n2N;22n+1 est premier ?

Soitpun nombre premier.

1.

Montrer que 8i2N;0 C ipest divisible parp: 2.

Montrer par récurence que :

8ppremier;8a2N;on aapaest divisible parp:

1.

Montrer par récurrence que 8n2N;8k>1 on a :

2

2n+k1=

22n1
k1Õ i=0(22n+i+1): 2. On pose Fn=22n+1. Montrer que pourm6=n,FnetFmsont premiers entre eux. 3. En déduire qu"il y a une infinité de nombres premiers. SoitXl"ensemble des nombres premiers de la forme 4k+3 aveck2N. 1.

Montrer que Xest non vide.

2. Montrer que le produit de nombres de la forme 4 k+1 est encore de cette forme. 3. On suppose que Xest fini et on l"écrit alorsX=fp1;:::;png. Soita=4p1p2:::pn1. Montrer par l"absurde queaadmet un diviseur premier de la forme 4k+3. 4. Montrer que ceci est impossible et donc que Xest infini.

Indication pourl"exer cice1 NAttention le reste d"une division euclidienne est plus petit que le quotient !

Indication pour

l"exer cice

4 NUtiliser les modulos (ici modulo 8), un entier est divisible par 8 si et seulement si il est équivalent à 0 modulo

8. Ici vous pouvez commencer par calculer 7

n(mod 8).Indication pourl"exer cice5 NIl faut travailler modulo 13, tout d"abord réduire 100 modulo 13. Se souvenir que siab(mod 13)alors

a kbk(mod 13). Enfin calculer ce que cela donne pour les exposantsk=1;2;3;:::en essayant de trouver une règle générale.Indication pourl"exer cice6 N1.Écrire n=2p+1. 2. Écrire n=2pet discuter selon quepest pair ou impair. 3.

Utiliser la première question.

4. P arl"absurde supposer que cela s"écri vecomme un carré, par e xemplea2+b2+c2=n2puis discuter

selon quenest pair ou impair.Indication pourl"exer cice11 NCommencer par simplifier l"équation ! Ensuite trouver une solution particulière(x0;y0)à l"aide de l"algorithme

d"Euclide par exemple. Ensuite trouver un expression pour une solution générale.Indication pourl"exer cice12 NIl ne faut surtout pas chercher à calculer 15!=123415, mais profiter du fait qu"il est déjà

"presque" factorisé.Indication pourl"exer cice13 NRaisonner par l"absurde et utiliser le lemme de Gauss.

Indication pour

l"exer cice

14 NPour 1. utiliser l"égalité

x b1= (x1)(xb1++x+1): Pour 2. raisonner par contraposition et utiliser la question 1. La question 3. est difficile ! Supposera>b. Commencer par montrer que pgcd(2a1;2b1) =pgcd(2a 2 b;2b1) =pgcd(2ab1;2b1). Cela vour permettra de comparer l"agorithme d"Euclide pour le calcul de

pgcd(a;b)avec l"algorithme d"Euclide pour le calcul de pgcd(2a1;2b1).Indication pourl"exer cice15 NRaisonner par contraposition (ou par l"absurde) : supposer quenn"est pas de la forme 2k, alorsnadmet un

facteur irréductiblep>2. Utiliser aussixp+1= (x+1)(1x+x2x3+:::+xp1)avecxbien choisi.Indication pourl"exer cice16 N4

1.Écrire

C ip=p(p1)(p2):::(p(i+1))i! et utiliser le lemme de Gauss ou le lemme d"Euclide. 2.

Raisonner a vecles modulos, c"est-à-dire prouv erapa(modp).Indication pourl"exer cice17 N1.Il f autêtre très soigneux : nest fixé une fois pour toute, la récurrence se fait surk>1.

2.

Utiliser la question précédente a vecm=n+k.

3. P arl"absurde, supposer qu"il y a seulement Nnombres premiers, considérerN+1 nombres du typeFi.

Appliquer le "principe du tiroir" :si vous avez N+1chaussettes rangées dans N tiroirs alors il existe

(au moins) un tiroir contenant (plus de) deux chaussettes.5

Correction del"exer cice1 NLa seule chose à voir est que pour une division euclidienne le reste doit être plus petit que le quotient. Donc les

divisions euclidiennes s"écrivent : 96842=256378+74 et 96842=258375+92.Correction del"exer cice2 NIl suffit de constater que pour 4 nombres consécutifs il y a nécessairement : un multiple de 2, un multiple de

3, un multiple de 4 (distinct du mutliple de 2). Donc le produit de 4 nombres consécutifs est divisible par

234=24.Correction del"exer cice3 NEcriren=p2+q2et étudier le reste de la division euclidienne denpar 4 en distinguant les différents cas de

parité depetq.Correction del"exer cice4 NRaisonnons modulo 8 :

7 1(mod 8):

Donc 7 n+1(1)n+1(mod 8):

Le reste de la division euclidienne de 7

n+1 par 8 est donc(1)n+1 donc Sinest impair alors 7n+1 est

divisible par 8. Et sinest pair 7n+1 n"est pas divisible par 8.Correction del"exer cice5 NIl sagit de calculer 100

1000modulo 13. Tout d"abord 1009(mod 13)donc 100100091000(mod 13). Or

9

2813(mod 13), 9392:93:91(mod 13), Or 9493:99(mod 13), 9594:99:93

(mod 13). Donc 10010009100093:333+1(93)333:91333:99(mod 13).Correction del"exer cice6 N1.Soit nun nombre impair, alors il s"écritn=2p+1 avecp2N. Maintenantn2= (2p+1)2=4p2+4p+

1=4p(p+1)+1. Doncn21(mod 8).

2. Si nest pair alors il existep2Ntel quen=2p. Etn2=4p2. Sipest pair alorsp2est pair et donc n

2=4p2est divisible par 8, doncn20(mod 8). Sipest impair alorsp2est impair et doncn2=4p2

est divisible par 4 mais pas par 8, doncn24(mod 8). 3. Comme aest impair alors d"après la première questiona21(mod 8), et de mêmec21(mod 8), c

21(mod 8). Donca2+b2+c21+1+13(mod 8). Pour l"autre reste, écrivonsa=2p+1 et

b=2q+1,c=2r+1, alors 2ab=2(2p+1)(2q+1) =8pq+4(p+q)+2. Alors 2(ab+bc+ca) =

8pq+8qr+8pr+8(p+q+r)+6, donc 2(ab+bc+ca)6(mod 8).

4. Montrons par l"absurde que le nombre a2+b2+c2n"est pas le carré d"un nombre entier. Supposons qu"il existen2Ntel quea2+b2+c2=n2. Nous savons quea2+b2+c23(mod 8). Sinest impair alorsn21(mod 8)et sinest pair alorsn20(mod 8)oun24(mod 8). Dans tous les casn2

n"est pas congru à 3 modulo 8. Donc il y a une contradiction. La conclusion est que l"hypothèse de

départ est fausse donca2+b2+c2n"est pas un carré. Le même type de raisonnement est valide pour

2(ab+bc+ca).

Pourab+bc+cal"argument est similaire : d"une part 2(ab+bc+ca)6(mod 8)et d"autre part si, par l"absurde, on supposeab+bc+ca=n2alors selon la parité dennous avons 2(ab+bc+ca)2n22

(mod 8)ou à 0(mod 8). Dans les deux cas cela aboutit à une contradiction. Nous avons montrer que

ab+bc+can"est pas un carré. 6

Correction del"exer cice7 NIl s"agit ici d"utiliser la décomposition des nombres en facteurs premiers.

1.

126 =2:32:7 et 230=2:5:23 donc le pgcd de 126 et 230 est 2.

2.

390 =2:3:5:13, 720=24:32:5, 450=2:32:52et donc le pgcd de ces trois nombres est 2:3:5=30.

3.

pgcd (180;606;750) =6.Correction del"exer cice8 NSoienta;bdeux entiers de pgcd 18 et de somme 360. Soita0;b0tel quea=18a0etb=18b0. Alorsa0etb0sont

premiers entre eux, et leur somme est 360=18=20.

Nous pouvons facilement énumérer tous les couples d"entiers naturels(a0;b0)(a06b0) qui vérifient cette

condition, ce sont les couples : (1;19);(3;17);(7;13);(9;11):

Pour obtenir les couples(a;b)recherchés (a6b), il suffit de multiplier les couples précédents par 18 :

(18;342);(54;306);(126;234);(162;198):Correction del"exer cice9 N1.pgcd (18480;9828) =84; 2.

25 18480+(47)9828=84.Correction del"exer cice10 N1.a=9b+10.

2. Calculons le pgcd par l"algorithme d"Euclide. a=9b+10,b=1234567810+9, 10=19+1. Donc le pgcd vaut 1; 3.

Nous reprenons les équations précédentes e npartant de la fin: 1 =109, puis nous remplaçons 9 grâce

à la deuxième équation de l"algorithme d"Euclide: 1=10(b1234567810) =b+1234679

10. Maintenant nous remplaçons 10 grâce à la première équation: 1=b+12345679(a9b) =

12345679a111111112b.Correction del"exer cice11 NEn divisant par 45 (qui est le pgcd de 1665;1035;45) nous obtenons l"équation équivalente :

37x+23y=1(E)

Comme le pgcd de 37 et 23 est 1, alors d"après le théorème de Bézout cette équation(E)a des solutions.

L"algorithme d"Euclide pour le calcul du pgcd de 37 et 23 fourni les coefficients de Bézout: 375+23

(8) =1. Une solution particulière de(E)est donc(x0;y0) = (5;8).

Nous allons maintenant trouver l"expression générale pour les solutions de l"équation(E). Soient(x;y)une

solution de l"équation 37x+23y=1. Comme(x0;y0)est aussi solution, nous avons 37x0+23y0=1. Faisons la différence de ces deux égalités pour obtenir 37(xx0)+23(yy0) =0. Autrement dit

37(xx0) =23(yy0) ()

7

On en déduit que 37j23(yy0), or pgcd(23;37) =1 donc par le lemme de Gauss, 37j(yy0). (C"est ici qu"il

est important d"avoir divisé par 45 dès le début !) Cela nous permet d"écrireyy0=37kpour unk2Z.

Repartant de l"égalité(): nous obtenons 37(xx0) =2337k. Ce qui donnexx0=23k. Donc si (x;y)est solution de(E)alors elle est de la forme :(x;y) = (x023k;y0+37k), aveck2Z.

Réciproquement pour chaquek2Z, si(x;y)est de cette forme alors c"est une solution de(E)(vérifiez-le !).

Conclusion : les solutions sont(523k;8+37k)jk2Z:Correction del"exer cice12 NÉcrivons la décomposition de 15!=1:2:3:4:::15 en facteurs premiers. 15!=211:36:53:72:11:13. Un diviseur

de 15! s"écritd=2a:3b:5g:7d:11e:13havec 06a611, 06b66, 06g63, 06d62, 06e61,

06h61. De plus tout nombredde cette forme est un diviseur de 15!. Le nombre de diviseurs est donc

(11+1)(6+1)(3+1)(2+1)(1+1)(1+1) =4032.Correction del"exer cice13 NSoitaetbdes entiers premiers entre eux. Raisonnons par l"absurde et supposons queabeta+bne sont pas

premiers entre eux. Il existe alorspun nombre premier divisantabeta+b. Par le lemme d"Euclide comme pjabalorspjaoupjb. Par exemple supposons quepja. Commepja+balorspdivise aussi(a+b)a, donc pjb.dne divise pasbcela implique quedetbsont premiers entre eux. D"après le lemme de Gauss, commeddiviseabetdpremier avecbalorsddivisea. Doncpest un facteur premier deaet debce qui est absurde.Correction del"exer cice14 N1.Nous sa vonsque x b1= (x1)(xb1++x+1); pourx=2anous obtenons : 2 ab1= (2a)b1= (2a1)

2a(b1)++2a+1

Donc(2a1)j(2ab1).

2. Montrons la contraposée. Supposons que pne soit pas premier. Doncp=abavec 1b. Nous allons montrer que faire l"algorithme d"Euclide pour le couple(2a1;2b

1)revient à faire l"algorithme d"Euclide pour(a;b). Tout d"abord rappellons la formule qui est à la

base de l"algorithme d"Euclide : pgcd(a;b) =pgcd(ab;b). Appliqué à 2a1 et 2b1 cela donne directement pgcd(2a1;2b1) =pgcd(2a2b;2b1). Mais 2a2b=2b(2ab1)d"où pgcd(2a

1;2b1) =pgcd(2b(2ab1);2b1) =pgcd(2ab1;2b1). La dernière égalité vient du fait 2bet

2 b1 sont premiers entre eux (deux entiers consécutifs sont toujours premiers entre eux). Nous avons montrer : pgcd(2a1;2b1) =pgcd(2ab1;2b1). Cette formule est à mettre en parallèle de pgcd(a;b) =pgcd(ab;b). En itérant cette formule nous obtenons que sia=bq+ralors : pgcd(2a1;2b1) =pgcd(2abq1;2b1) =pgcd(2r1;2b1)à comparer avec pgcd(a;b) =

pgcd(abq;b) =pgcd(r;b). Nous avons notre première étape de l"algorithme d"Euclide. En itérant

l"algorithme d"Euclide pour(a;b), nous nous arêtons au dernier reste non nul: pgcd(a;b) =pgcd(b;r) =

=pgcd(rn;0) =rn. Ce qui va donner pour nous pgcd(2a1;2b1) =pgcd(2b1;2r1) == pgcd(2rn1;201) =2rn1.

Bilan : pgcd(2a1;2b1) =2pgcd(a;b)1.

8

Correction del"exer cice15 N1.Supposons que an+1 est premier. Nous allons montrer la contraposée. Supposons quenn"est pas de la

forme 2 k, c"est-à-dire quen=pqavecpun nombre premier>2 etq2N. Nous utilisons la formule x p+1= (x+1)(1x+x2x3+:::+xp1) avecx=aq: a n+1=apq+1= (aq)p+1= (aq+1)(1aq+(aq)2++(aq)p1): Doncaq+1 divisean+1 et comme 1Cette conjecture est f ausse,mais pas f acileà vérifier sans une bonne calculette ! En ef fetpour n=5 nous

obtenons : 2

25+1=4294967297=6416700417:Correction del"exer cice16 N1.Étant donné 0 C ip=p!i!(pi)!=p(p1)(p2):::(p(i+1))i! CommeCipest un entier alorsi! divisep(p1):::(p(i+1)). Maisi! etpsont premiers entre eux (en

utilisant l"hypothèse 0 autrement dit il existek2Ztel queki!= (p1):::(p(i+1)). Maintenant nous avonsCip=pkdonc pdiviseCip. 2. Il s"agit de montrer le petit théorème de Fermat: pour ppremier eta2N, alorsapa(modp). Fixons p. Soit l"assertion (Ha)apa(modp): Poura=1 cette assertion est vraie ! Étant donnéa>1 supposons queHasoit vraie. Alors (a+1)p=på i=0Cipai:

Mais d"après la question précédente pour 0 (a+1)pC0pa0+Cppap1+ap(modp): Par l"hypothèse de récurrence nous savons queapa(modp), donc (a+1)pa+1(modp): Nous venons de prouver queHa+1est vraie. Par le principe de récurrence alors quelque soita2Nnous avons: a pa(modp):Correction del"exer cice17 N9

1.Fixons net montrons la récurrence surk>1. La formule est vraie pourk=1. Supposons la formule

vraie au rangk. Alors (22n1)kÕ i=0(22n+i+1) = (22n1)k1Õ i=0(22n+i+1)(22n+k+1) = (22n+k1)(22n+k+1) = (22n+k)21=22n+k+11:

Nous avons utiliser l"hypothèse de récurrence dans ces égalités. Nous avons ainsi montrer la formule au

rangk+1. Et donc par le principe de récurrence elle est vraie. 2. Écri vonsm=n+k, alors l"égalité précédente devient: F m+2= (22n1)m1Õ i=nF i:quotesdbs_dbs45.pdfusesText_45

[PDF] aidez moi vite j'ai besoin de ce devoir pour demain 4ème Mathématiques

[PDF] Aidez moi vite s'il vous plait !! 4ème Mathématiques

[PDF] Aidez moi vite svp c koi la definiton de chaine d'information et d'énergie Helping 4ème Technologie

[PDF] aidez moi vitr svp!! 4ème Mathématiques

[PDF] Aidez moi!! Galère! 3ème Mathématiques

[PDF] AIDEZ MOI!!!!!!!!!! BESOIN D'AFFICHE DE PROPAGANDE!!!!!!! 3ème Histoire

[PDF] Aidez Moi, S'il vous plait !!! 4ème Mathématiques

[PDF] Aidez moiii 3ème Anglais

[PDF] Aidez moiii, devoir a rendre pour demaiiiin ! 3ème Mathématiques

[PDF] Aidez s'il vous palait pour des maths 3ème Mathématiques

[PDF] aidez sur l'exercice SVP 3ème Mathématiques

[PDF] aidez svp 5ème Mathématiques

[PDF] Aidez svp je n'y arrive pas !! 4ème Physique

[PDF] aidez svp sur l'activite de physique 3ème Physique

[PDF] Aidez vite svp 5ème SVT