[PDF] Heterogeneous effects of climatic conditions on Andean bean





Previous PDF Next PDF



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA Auditoría de

Nov 20 2011 Que el presente trabajo



Heterogeneous effects of climatic conditions on Andean bean

Biológicas y Agropecuarias Universidad Técnica Particular de Loja-UTPL



ÁREA BIOLÓGICA Y BIOMÉDICA

fines comerciales y se permiten obras derivadas siempre que mantenga la misma “Yo



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA ÁREA

SA: Reconocimiento-No comercial-Compartir igual; la cual permite copiar distribuir y “Yo Ojeda Luna



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA ÁREA

SA: Reconocimiento-No comercial-Compartir igual; la cual permite copiar distribuir y “Yo Ojeda Luna



ÁREA BIOLÓGICA Y BIOMÉDICA

fines comerciales y se permiten obras derivadas siempre que mantenga la misma “Yo



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA ÁREA

ecuatoriana Croton rivinifolius Kunth realizado por Luna Romero Russbelt Vladimir ha agradecer al Departamento de Química y Ciencias Exactas de la UTPL.



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA ÁREA

Yo Luna Romero Russbelt Vladimir declaro ser autor del presente trabajo de quiero agradecer al Departamento de Química y Ciencias Exactas de la UTPL.



I /

Jun 22 2017 No comercial-Compartir igual; la cual permite copiar



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA ÁREA

Apr 4 2016 SA: Reconocimiento-No comercial-Compartir igual; la cual permite copiar



UNIVERSIDAD TÉCNICA PARTICULAR DE LOJA

almacén Comercial Luna en el período comprendido del 01 de enero al 31 de diciembre del 2010 se realizó de acuerdo al manual de auditoría de gestión de la Contraloría General del Estado normas técnicas de control interno y principios de auditoría

| (2022) 12:6586 | www.nature.com/scientificreports

Phaseolus vulgaris

P. lunatusVigna unguiculata

P. vulgaris

P. vulgaris

P. vulgaris

Improving agricultural resilience and adaptation to climate change e?ects is a priority to ensure crop production

and food security in the upcoming years1 . Climate change modi?es the trends in temperature and precipitation,

thus a?ecting the response to environmental factors of many species at di?erent geographical levels, with dras-

tic e?ects and, o?en, a negative impact on crops 2,3 . However, there is a consensus among di?erent projections

that indicate negative impacts of the increase in temperatures on the main crops in many agricultural

regions4

Moreover, the more updated models with improved and diverse scenarios produce more pessimistic projections

for yield responses for maize, rice, and soy bean, although wheat could bene?t from higher CO 2 concentrations 5

Supporting the latter predictions, the analysis of combined published results of di?erent analytical methods

highlights the vulnerability of agriculture to climate change, suggesting a yield reduction of around 3.0 to 6.0%

for each degree increase in temperature 6 . Besides the direct e?ects of temperature and rainfall on crops and plant diseases 7 , climate change has important economic consequences on agriculture 8 . However, the impact of climate change e?ects on crops depends on both the crop identity and its geographic location 9 Plants exhibit the ability to cope with changes in their environment via phenotypic plasticity10 . ?erefore,

prior to developing crop improvement or conservation programmes, either to face climate change challenges or

to choose appropriate crop varieties that might perform well under certain local conditions, it is indispensable

Facultad de CC. Agropecuarias,

Present address: Instituto Universitario de

Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Camino de Vera s/n,

email: maruigon@upvnet.upv.es

Vol:.(1234567890)

| (2022) 12:6586 | www.nature.com/scientificreports/ to gain knowledge on the plant plasticity and its potential adaptability to abiotic factors 11 . Moreover, the study

of crop phenotypic plasticity must include the analysis of phenology, in addition to other critical traits related

to plant morphology and reproduction, because phenology is highly susceptible to changes in the environmen

tal factors 12 . us, the information gathered in this way might allow: (1) to select those varieties suitable for a

particular range of environmental conditions, with important consequences for local community development,

sustainable agriculture and food security; (2) it might help to identify those varieties more prone to suer nega-

tive eects, and thus, allowing their conservation before their eective loss due to the abandoning of low yield

landraces 13 ; (3) the overall information might provide useful to develop specic indexes aimed at quantifying the resilience potential of either one species or landrace or a particular character.

Beans are a major food resource grown worldwide and represent the main source of protein for many societies,

thus playing a vital role in the human diet of developing societies 14 . Beans (

Phaseolus spp) originated in the New

World. Common bean (

P. vulgaris

) had two main domestication centres at Middle and Andean South America,

with four major genetic groups in Mesoamerica, Colombia, Northern Andes of Ecuador and north Peru, and

the southern Andes; and exhibits both a wide morphological variability (>

40,000 varieties), and adaptation

to a broad array of environments 15 -18 . Lima beans ( P. lunatus), distributed from northern Mexico to northern

Argentina, have three major genetic groups, two in Mesoamerica and one in the Andes (southern Ecuador and

northern Peru), which is the most likely origin of the species 19 -21 . Moreover, there exists great diversity of wild bean species with potential to improve the resistance to environmental factors in common bean crops 22
. In

addition, Latin America represents about the 50% of the bean world production, followed by Africa; per capita

consumption of beans in these regions can oscillate between 12 to 60kg per year and represent a signicant

source of protein 14 ,23 . In Ecuador, beans, which are commonly named fréjol, fríjol and poroto (P. vulgaris) and

torta (P. lunatus), belong to the genus Phaseolus spp., while the cowpeas, named vaina, are Vigna spp., originated

in Africa 24
. Both species represent the main leguminous crops with a soil surface around 32,817ha devoted for their culture, with an overall production of 27,492 t 25
. Moreover, as in many other countries, most producers are

smallholder farmers that grow beans mainly for self-consume, whether as crop rotation or associated to maize,

and thus, beans are an important contribution to Ecuador food sovereignty 26

ere are robust projections predicting a generalized decline in crops yield due to the impact of climate

change, and highlighting the urgency of further research on the eects of high temperatures and other factors on

crops to gain a better understanding on the uncertainties of production impacts

5,9,27

. We lack specic predictions;

however, for the impact of climate change eects on the production of legumes for the Andean region, where a

negative impact on the production of cereals is expected 9 . e eects of climate change on the acceleration of phenological aspects of crops can be counteracted by shiing existing varieties into dierent regions 28
. us, it is

pivotal to promote the investigation of the impact of abiotic stresses on landraces; dened by Casañas etal.

29
as

those “cultivated varieties that have evolved and may continue evolving, using conventional or modern breeding

techniques, in traditional or new agricultural environments within a dened ecogeographical area and under

the inuence of the local human culture".

Several studies have focused on the eects that dierent aspects of climate change and abiotic stress factors

have on the common bean. For example, drought, the most extensively studied factor, has drastic eects on leg

umes because it accelerates plant maturation in Phaseolus spp. and Vigna spp., among other eects, and reduces yield components and biomass

14,30,31

; elevated CO 2 concentrations have direct positive eects on stem mass, and a strong genotype CO 2 interaction for pod number, seed mass and yield on

P. vulgaris

32
; and high temperatures negatively aect reproduction, fertilization, and post-fertilization 33
; Lima beans (

P. lunatus); however, are more

tolerant to heat than

P. vulgaris

14

In the present work, we have investigated the eects of two dierent environmental conditions on the archi

tecture, reproduction, yield, and phenology by using standard agromorphologic and phenological descriptors

on 12 landraces of

P. vulgaris

, P. lunatus, and Vigna unguiculata sampled from dierent localities at the Andes of south Ecuador, and a commercial

P. vulgaris

cultivar (Supporting TablesS1 and S2; Supporting Fig.S1). Moreover, to test for potential adaptation or conditioning to local environmental factors, four

P. vulgaris

and the

P. lunatus

landraces came from cold background locations, and ve

P. vulgaris

and the two

V. unguiculata landraces, came

from warm background locations. en, to understand the implications of the results better, we calculated an

index, the climate resilience landrace index, with potential application in decision-making.

A summary describing all plant architecture, ower, fruit, and yield, and phenological traits for each of the

thirteen Phaseolus sp. and Vigna sp. landraces in the open eld and the greenhouse conditions is provided in

Supporting TablesS3, S4 and S5. Main eects Kruskal-Wallis tests are summarised in Table1, and the interactions

between treatment conditions (open eld and greenhouse) and species, and landrace and climatic background

are summarised in Table2. Plants under high temperatures and low humidity in the greenhouse exhibited sig-

nicant higher overall mean rank values than eld plants for stem diameter, the degree of branch orientation,

composite sheet length and width, and the terminal leaet length. e size of the angle of the base of the terminal

leaet, however, was bigger in the eld (Supporting TablesS3 and Table1). ere were overall signicant dier-

ences for species and landrace for all studied characters (Table1). e Kruskal-Wallis analyses of the interac-

tions between treatment (open eld vs greenhouse conditions) and species, climatic background, and landrace

were signicant for all the traits ( p -value

0.001; Table

2

Post hoc pairwise comparisons for treatment

× species interaction (Table3), found that P. vulgaris plants

produced signicant higher mean rank values for branch orientation angle in the greenhouse than in the eld

Vol.:(0123456789)

| (2022) 12:6586 | www.nature.com/scientificreports/ Table 1. Main e?ects Kruskal-Wallis H tests for treatment (open ?eld vs greenhouse conditions), species,

landrace, and climatic background of the landraces. Plant architecture: Q1 to Q11; ?ower, fruit, and yield: Q12

to Q35; and phenology: P8 to P89. Bold numbers denote signi?cant p -values.

TraitNTreatmentSpeciesLandraceClimatic background

2 d.fp-value 2 d.fp-value 2 d.fp-value 2 d.fp-value Q14300.01610.89937.9692 < 0.001124.52612 < 0.00148.4042 < 0.001 Q243010.74710.001171.2282 < 0.001261.87912 < 0.00121.5482 < 0.001 Q44064.70110.03086.4232 < 0.001115.85412 < 0.00110.48520.005 Q64035.41110.02023.3122 < 0.001130.82112 < 0.00114.06120.001 Q740311.10910.00118.5612 < 0.001103.55812 < 0.00119.462 < 0.001 Q84030.69510.40590.52 < 0.001188.05812 < 0.00195.6782 < 0.001 Q94036.07410.01459.5412 < 0.001128.8412 < 0.0012.60420.272 Q104031.76310.18438.0882 < 0.001154.09312 < 0.00162.8882 < 0.001 Q114034.12710.042192.5392 < 0.001258.34812 < 0.001144.8812 < 0.001 Q1247390.6571 < 0.00155.5682 < 0.001193.25512 < 0.00111.16120.004 Q152251.68810.19473.3261 < 0.001111.0659 < 0.0015.25320.072 Q162800.07210.788146.0162 < 0.001223.61711 < 0.00131.1522 < 0.001 Q172800.15310.695153.8762 < 0.001227.18511 < 0.00133.932 < 0.001 Q182800.27910.597177.5672 < 0.001243.79411 < 0.001120.7012 < 0.001 Q192800.00210.960167.3812 < 0.001231.31511 < 0.00171.6242 < 0.001 Q202800.63410.426139.1512 < 0.001235.35411 < 0.00131.8252 < 0.001 Q21529116.5121 < 0.00138.2772 < 0.001156.05112 < 0.0015.40920.067 Q2249521.2121 < 0.00174.5182 < 0.001146.63111 < 0.0013.11520.211 Q233280.18910.664175.0762 < 0.001235.51611 < 0.0018.16520.017 Q243285.57710.018155.6272 < 0.001274.0611 < 0.00197.2242 < 0.001 Q253280.15610.69384.3842 < 0.001241.08811 < 0.00150.4952 < 0.001 Q263281.35410.245204.362 < 0.001268.46811 < 0.00158.9952 < 0.001 Q27530781 < 0.00128.9382 < 0.001184.17412 < 0.00121.5742 < 0.001 Q283280.06810.795193.0332 < 0.001277.30211 < 0.001120.0852 < 0.001 Q293282.70310.100203.0392 < 0.001305.13811 < 0.001140.0682 < 0.001 Q303281.98710.159170.0582 < 0.001259.77811 < 0.0018.04620.018

Q313280.05210.819108.6462 < 0.001315.70511

0.00171.3852 < 0.001

Q3248055.4311 < 0.00196.0472 < 0.001196.24512 < 0.00125.6662 < 0.001 Q33480109.2261 < 0.00168.2552 < 0.001164.34812 < 0.00114.12520.001 Q34480115.6241 < 0.00167.9012 < 0.001163.75912 < 0.00113.22320.001 Q35480135.7611 < 0.00135.1372 < 0.001150.53212 < 0.0019.60820.008 P85308.55610.00348.5442 < 0.001152.83212 < 0.00144.7772 < 0.001 P95302.98110.084101.8942 < 0.001240.23912 < 0.00174.5912 < 0.001 P105306.55110.01045.8692 < 0.001199.64412 < 0.00163.2612 < 0.001 P125306.80510.00931.4882 < 0.001203.98612 < 0.00138.7532 < 0.001 P1353053.2041 < 0.00124.6952 < 0.001174.21412 < 0.00171.8352 < 0.001 P19522114.3761 < 0.001136.2052 < 0.001205.61412 < 0.00110.00720.007 P21522187.8071 < 0.0011.47420.47830.469120.0021.16320.559 P5148624.9911 < 0.001212.5812 < 0.001311.94812 < 0.00119.5692 < 0.001 P5548534.1971 < 0.001219.3372 < 0.001307.49712 < 0.00118.3172 < 0.001 P5948142.6411 < 0.001216.8062 < 0.001299.87412 < 0.00116.1372 < 0.001 P614725.58810.018217.7612 < 0.001316.39412 < 0.00110.79720.005 P654723.41710.065173.5852 < 0.001291.24212 < 0.0012.74120.254 P6747213.141 < 0.001109.0812 < 0.001232.2112 < 0.0012.27620.321 P6937849.6031 < 0.001157.8052 < 0.001213.85512 < 0.00114.58920.001 P813789.68610.002154.0542 < 0.001231.24912 < 0.00120.6192 < 0.001 P853780.7310.393121.9962 < 0.001204.21112 < 0.00118.9782 < 0.001 P8937823.8491 < 0.00162.3412 < 0.001141.68612 < 0.00128.4132 < 0.001

Vol:.(1234567890)

| (2022) 12:6586 | www.nature.com/scientificreports/ (median values: 140.00° vs 133.33°). Similarly, P. lunatus plants exhibited signicant higher values in the green-

house for composite sheet length and width and terminal leaet width (median values: 238.28, 209.95 and

115.26mm, respectively) than in the eld (median values: 208.34, 169.27 and 93.76mm, respectively); but the

terminal leaet length performed better in the eld compared to greenhouse (medians: 62.36 and 52.02mm).

Table 2. Kruskal-Wallis H tests for the interactions between treatment (open eld and greenhouse) and species, landrace, or the climatic background. TraitNT × sppT × landraceT × climatic background

Hd.fp-valueHd.fp-valueHd.fp-value

Q143038.9325 < 0.001133.03124 < 0.00150.6005 < 0.001 Q2430181.6015 < 0.001267.97224 < 0.00129.3375 < 0.001 Q4406102.3374 < 0.001136.70822 < 0.00123.8275 < 0.001 Q640343.4835 < 0.001163.54822 < 0.00152.6185 < 0.001 Q740356.5895 < 0.001165.0622 < 0.00155.2715 < 0.001 Q8403100.9555 < 0.001203.24722 < 0.001107.4585 < 0.001 Q940394.7195 < 0.001182.82622 < 0.00144.5445 < 0.001 Q1040345.5865 < 0.001184.27422 < 0.001106.7575 < 0.001 Q11403198.5245 < 0.001280.2622 < 0.001153.3625 < 0.001 Q12473148.6845 < 0.001367.74224 < 0.001129.4965 < 0.001 Q1522575.7313 < 0.001127.49117 < 0.00118.07250.003 Q16280147.2415 < 0.001232.32520 < 0.00132.9145 < 0.001 Q17280156.4735 < 0.001232.98420 < 0.00135.6515 < 0.001 Q18280177.7195 < 0.001246.99120 < 0.001123.5775 < 0.001 Q19280168.7685 < 0.001239.13820 < 0.00180.6455 < 0.001 Q20280143.3585 < 0.001237.25620 < 0.00143.1215 < 0.001 Q21529162.7345 < 0.001340.92224 < 0.001134.1175 < 0.001 Q22457105.2485 < 0.001198.42721 < 0.00140.9545 < 0.001 Q23328175.0815 < 0.001238.49519 < 0.00110.29050.067 Q24328169.4255 < 0.001282.45419 < 0.001102.9335 < 0.001 Q2532888.0775 < 0.001246.94119 < 0.00154.1145 < 0.001 Q26328204.75 < 0.001273.90419 < 0.00162.9475 < 0.001 Q27530119.3365 < 0.001329.12824 < 0.001139.6745 < 0.001 Q28328194.0095 < 0.001278.56919 < 0.001127.1665 < 0.001 Q29328204.8335 < 0.001306.41219 < 0.001142.0245 < 0.001 Q30328182.7365 < 0.001275.0519 < 0.00113.36350.020 Q31328109.3295 < 0.001316.8819 < 0.00176.3375 < 0.001 Q32528154.9545 < 0.001336.06224 < 0.001110.7625 < 0.001 Q33528183.1885 < 0.001342.29224 < 0.001147.0655 < 0.001 Q34528189.3365 < 0.001348.46724 < 0.001153.1925 < 0.001 Q35528183.575 < 0.001354.88524 < 0.001171.4245 < 0.001 P853060.8155 < 0.001192.66524 < 0.00153.9105 < 0.001 P9530108.0345 < 0.001269.95924 < 0.00178.2025 < 0.001 P1053056.2655 < 0.001240.2924 < 0.00170.9985 < 0.001

P1253041.5465 < 0.001256.04324 < 0.00147.527

5 < 0.001

P1353074.2485 < 0.001231.13924 < 0.001121.4875 < 0.001 P19522256.8175 < 0.001340.2924 < 0.001134.1745 < 0.001 P21522197.2995 < 0.001243.98524 < 0.001190.5025 < 0.001 P51486257.6355 < 0.001377.6824 < 0.00151.6065 < 0.001 P55485272.5315 < 0.001380.14424 < 0.00158.6565 < 0.001 P59481277.2425 < 0.001376.40724 < 0.00164.7045 < 0.001 P61472229.4645 < 0.001349.70224 < 0.00120.22850.001 P65472177.1195 < 0.001331.74624 < 0.00116.09050.007 P67472121.9775 < 0.001297.84724 < 0.00123.3755 < 0.001 P69378223.4185 < 0.001295.36523 < 0.00168.3095 < 0.001 P81378171.435 < 0.001262.99723 < 0.00133.6435 < 0.001 P85378126.5185 < 0.001229.66723 < 0.00122.8905 < 0.001 P8937888.7515 < 0.001201.07923 < 0.00156.9095 < 0.001

Vol.:(0123456789)

| (2022) 12:6586 | www.nature.com/scientificreports/

Landrac

e Trai tP. vulgarisV. unguiculataP. lunatusTTSCold backgroundWarm

BackgroundCommercialTTS

Q11.0001.0001.00001.0001.0001.0000

Q20.3010.5331.00001.0000.4001.0000

Q4 0.001 -1.00010.005

1.0001.0001

Q61.0001.000

< 0.001

1< 0.001

0.7101.0001

Q71.0001.000

< 0.001

1< 0.001

1.0001.0001

Q81.0001.000

0.043

10.0671.0001.0000

Q91.0001.000

< 0.001

1< 0.001

0.6691.0001

Q1

01.0001.0000.1150

< 0.001 0.049

1.0002

Q1

10.2621.0001.00001.0001.0000.2620

Q1 2 < 0.001 < 0.001

0.34821.000< 0.001

< 0.001 2 Q1

51.000-1.00001.0001.000

0.037 1 Q1

61.0001.0001.00001.0001.0001.0000

Q1

71.0001.0001.00001.0001.0001.0000

Q1

81.0001.0001.00001.0001.0001.0000

Q1

91.0001.0001.00000.0831.0001.0000

Q2

01.0001.0001.0000

0.027

1.0001.0001

Q2 1 < 0.001 < 0.001 < 0.001

20.014

< 0.001

0.1081

Q2

20.260

0.017 0.002

31.000< 0.001

0.3981

Q2

31.0001.0001.0000-

Q2 4 0.025

0.7581.00011.0001.0001.0000

Q2

51.0001.0001.00001.0001.0001.0000

Q2

61.0001.0001.00001.0001.0001.0000

Q2 7 < 0.001 < 0.001

1.00021.000< 0.001

0.1801

Q2

81.0001.0001.00001.0000.1511.0000

Q2

91.0001.0001.00001.0001.0001.0000

Q3 0 0.012

1.0001.00011.0001.0000.5140

Q3

11.0001.0001.00001.0000.6921.0000

Continued

Vol:.(1234567890)

| (2022) 12:6586 | www.nature.com/scientificreports/ Q3

2< 0.001

0.7370.004

11.000< 0.001

0.025 3 Q3 3 < 0.001 < 0.001 0.001

21.000< 0.001

0.023 2 Q3 4 < 0.001 < 0.0010.001

20.947< 0.001

0.030 2 Q3 5 < 0.001 < 0.001 < 0.001

20.155< 0.001

0.047 2

P80.016

1.0001.00010.7790.3141.0000

P90.4801.0001.00001.0001.0001.0000

P1 0 0.045

1.0001.00011.0000.2051.0000

P1 2 0.037

1.0001.00011.0000.0571.0000

P1 3 < 0.001

0.1681.00010.005

< 0.001

1.0002

P1 9 < 0.001

1.000< 0.001

2< 0.001

< 0.001 < 0.001 3 P2 1 < 0.001 < 0.001 < 0.001

3< 0.001

< 0.001 < 0.001 3 P5quotesdbs_dbs22.pdfusesText_28
[PDF] Auditorium Stravinski FICHE TECHNIQUE - 2m2c

[PDF] auditorium stravinski - Montreux Jazz

[PDF] o Programme PDF - Montreux Jazz

[PDF] AUDITSec Guide d 'utilisation de l 'outil d 'audit de sécurité - Mag-Securs

[PDF] BOURSE RÉGIONALE DE NIVEAU MASTER SANS MOBILITÉ 2017

[PDF] (FOAD ) 2017/2018

[PDF] Les formations ouvertes et ? distance ? l 'Agence - Thierry Karsenti

[PDF] Indice des prix ? la consommation : Revue annuelle, 2016

[PDF] Indice des prix ? la consommation, janvier 2017

[PDF] Dépôt : Augmentation du capital de la SARL 3 - Service-publicma

[PDF] Dépôt : Augmentation du capital de la SARL 3 - Service-publicma

[PDF] 205 06 Lexique DS n°7

[PDF] Avis d 'augmentation de loyer et de modification d 'une autre

[PDF] Modifications aux programmes d 'aide financière au études 2016-2017

[PDF] J BOURSIER - Que faire devant une perturbation du bilan